Volume 45 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
WANG Ershen, YANG Di, WANG Chuanyun, et al. Parameter analysis and improvement of PSO satellite selection algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2133-2138. doi: 10.13700/j.bh.1001-5965.2019.0138(in Chinese)
Citation: WANG Ershen, YANG Di, WANG Chuanyun, et al. Parameter analysis and improvement of PSO satellite selection algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2133-2138. doi: 10.13700/j.bh.1001-5965.2019.0138(in Chinese)

Parameter analysis and improvement of PSO satellite selection algorithm

doi: 10.13700/j.bh.1001-5965.2019.0138
Funds:

National Natural Science Foundation of China 61571309

National Natural Science Foundation of China 61703287

the Fundamental Research Funds for the Central Universities 3132016317

Liaoning Baiqianwan Talents Program 04021407

Natural Science Foundation of Liaoning Province 2019-MS-251

Scientific Study Project for Liaoning Province Department of Education L201705

Scientific Study Project for Liaoning Province Department of Education L201716

Liaoning Excellent Talents in University LR2016069

More Information
  • Corresponding author: WANG Ershen.E-mail: wanges_2016@126.com
  • Received Date: 01 Apr 2019
  • Accepted Date: 31 May 2019
  • Publish Date: 20 Nov 2019
  • Multi-constellation integrated navigation can provide users with more visible satellites; however, the computational complexity of the navigation receiver will also be increased. Therefore, part visible satellites are selected instead of all visible satellites for receiver position solution, which becomes a hot spot in satellite selection algorithm research. The particle swarm optimization (PSO) is introduced into the satellite selection process by the PSO fast satellite selection algorithm. Through this method, not only the time for selecting satellite is reduced, but also the fast selection of the Beidou/GPS integrated constellation is implemented. The influence of the algorithm's key parameters such as inertia weighting factor, acceleration coefficient and population size on the performance of PSO satellite selection algorithm is studied. In addition, since PSO satellite selection algorithm is easy to fall into the local optimum for the search process, the adaptive simulated annealing particle swarm optimization (ASAPSO) algorithm is proposed to optimize the process of satellite selection algorithm. Moreover, the adaptive adjustment of evolutionary parameters with adaptive value, the adjustment of particle velocity in combination with simulated annealing algorithm are introduced in order to enhance the ability of the algorithm to jump out of local extremum. The algorithm is verified by using real navigation data, and the results demonstrate that the ASAPSO algorithm not only can ensure the satellite selection time, but also can improve the accuracy of the search results. Moreover, the performance of the ASAPSO satellite selection algorithm is better than that of the PSO satellite selection algorithm.

     

  • loading
  • [1]
    DEANE B, LEO E, DEBORAH L.GNSS evolutionary architecture study Phase Ⅱ Report[R]. Washington, D.C.: FAA, 2010.
    [2]
    ZHENG Z Y, HUANG C, FENG C G, et al.Selection of GPS satellites for the optimum geometry[J]. Chinese Astronomy and Astrophysics, 2004, 28:80-87. doi: 10.1016/S0275-1062(04)90009-4
    [3]
    DONG S H.A closed-form formula for GPS GDOP computation[J]. GPS Solutions, 2009, 13(3):183-190. doi: 10.1007/s10291-008-0111-2
    [4]
    霍航宇, 张晓林.组合卫星导航系统的快速选星方法[J].北京航空航天大学学报, 2015, 41(2):273-282. https://bhxb.buaa.edu.cn/CN/abstract/abstract13160.shtml

    HUO H Y, ZHANG X L.Fast satellite selection method for integrated navigation systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2):273-282(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract13160.shtml
    [5]
    BLANCO-DELGADO N, NUNES F D.Satellite selection method for multi-constellation GNSS using convex geometry[J]. IEEE Transactions on Vehicular Technology, 2010, 59(9):4289-4297. doi: 10.1109/TVT.2010.2072939
    [6]
    宋丹, 许承东, 胡春生, 等.基于遗传算法的多星座选星方法[J].宇航学报, 2015, 36(3):300-308. doi: 10.3873/j.issn.1000-1328.2015.03.008

    SONG D, XU C D, HU C S, et al.Satellite selection with genetic algorithm under multi-constellation[J]. Journal of Astronautics, 2015, 36(3):300-308(in Chinese). doi: 10.3873/j.issn.1000-1328.2015.03.008
    [7]
    WANG E S, JIA C Y, TONG G, et al.Fault detection and isolation in GPS receiver autonomous integrity monitoring based on chaos particle swarm optimization-particle filter algorithm[J]. Advances in Space Research, 2018, 61(9):1260-1272. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cd00e7c21838dafba7cdf21d45282e3d
    [8]
    冯智博, 黄宏光, 李奕.基于改进粒子群算法的WSN覆盖优化策略[J].计算机应用研究, 2011, 28(4):1272-1275. doi: 10.3969/j.issn.1001-3695.2011.04.020

    FENG Z B, HUANG H G, LI Y.Strategy of wireless sensor networks coverage optimization by improved particle swarm algorithm[J]. Application Research of Computers, 2011, 28(4):1272-1275(in Chinese). doi: 10.3969/j.issn.1001-3695.2011.04.020
    [9]
    王尔申, 贾超颖, 曲萍萍, 等.基于混沌粒子群优化的北斗/GPS组合导航选星算法[J].北京航空航天大学学报, 2019, 45(2):259-265. https://bhxb.buaa.edu.cn/CN/abstract/abstract14711.shtml

    WANG E S, JIA C Y, QU P P, et al.Research on BDS/GPS integrated navigation fast selection algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2):259-265(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract14711.shtml
    [10]
    胥小波, 郑康锋, 李丹, 等.新的混沌粒子群优化算法[J].通信学报, 2012, 33(1):24-30. doi: 10.3969/j.issn.1000-436X.2012.01.004

    XU X B, ZHENG K F, LI D, et al.New chaos-particle swarm optimization algorithm[J]. Journal on Communications, 2012, 33(1):24-30(in Chinese). doi: 10.3969/j.issn.1000-436X.2012.01.004
    [11]
    SHI Y H, EBERHART R C.A modified particle swarm optimizer[C]//IEEE International Conference on Evolutionary Computation.Piscataway, NJ: IEEE Press, 1998: 69-73. http://www.researchgate.net/publication/3755900_Modified_particle_swarm_optimizer
    [12]
    EBERHART R C, SHI Y H.Particle swarm optimization: developments, applications and resources[C]//Proceedings of the 2001 Congress on Evolutionary Computation.Piscataway, NJ: IEEE Press, 2002: 81-86. http://www.researchgate.net/publication/247116719_particle_swarm_optimization_developments
    [13]
    KURU L, OZTURK A, KURU E, et al.Determination of voltage stability boundary values in electrical power systems by using the chaotic particle swarm optimization algorithm[J]. International Journal of Electrical Power & Energy Systems, 2015, 64(15):873-879. http://cn.bing.com/academic/profile?id=b41afefa2948ab37aba8fb44e989b94d&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    WU G, WANG H, PEDRYCZ W, et al.Satellite observation scheduling with a novel adaptive simulated annealing algorithm and a dynamic task clustering strategy[J]. Computers & Industrial Engineering, 2017, 113:576-588. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ebbcff09ea91fd3eb936cccc3985ccc6
    [15]
    ASSAD A, DEEP K.A hybrid harmony search and simulated annealing algorithm for continuous optimization[J]. Information Sciences, 2018, 450:246-266. doi: 10.1016/j.ins.2018.03.042
    [16]
    TAVARES R S, MARTINS T C, TSUZUKI M S G.Simulated annealing with adaptive neighborhood:A case study in off-line robot path planning[J]. Expert Systems with Applications, 2011, 38(4):2951-2965. doi: 10.1016/j.eswa.2010.08.084
    [17]
    薛永生, 吴立尧.基于模拟退火的改进粒子群算法研究及应用[J].海军航空工程学院学报, 2018, 33(2):248-252. http://d.old.wanfangdata.com.cn/Periodical/hjhkgcxyxb201802013

    XUE Y S, WU L Y.Research and application of improved PSO algorithm based on simulated annealing[J]. Journal of Naval Aeronautical and Astronautical University, 2018, 33(2):248-252(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hjhkgcxyxb201802013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(3)

    Article Metrics

    Article views(870) PDF downloads(440) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return