Zhang Zhimin, Li Jinqiu, Guo Yanyanget al. Computational Model of Progressive Failure in Composite Sandwich Structures[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(5): 565-568. (in Chinese)
Citation: ZHANG Ying, BAO Jin, GUO Hailong, et al. Non-orthogonal multiple-relaxation-time lattice Boltzmann simulation of natural convection in porous square cavity with internal heat source[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 241-251. doi: 10.13700/j.bh.1001-5965.2019.0218(in Chinese)

Non-orthogonal multiple-relaxation-time lattice Boltzmann simulation of natural convection in porous square cavity with internal heat source

doi: 10.13700/j.bh.1001-5965.2019.0218
Funds:

National Natural Science Foundation of China 51566012

National Natural Science Foundation of China 11562011

Natural Science Foundation of Jiangxi Province, China 20181BAB206031

More Information
  • Corresponding author: LI Peisheng, E-mail:nucdns1995z@163.com
  • Received Date: 10 May 2019
  • Accepted Date: 05 Jul 2019
  • Publish Date: 20 Feb 2020
  • In order to enhance the effect of fluid flow and heat transfer in the porous square cavity, the non-orthogonal multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) is used to simulate the natural convective heat transfer in the porous square cavity with internal heat source. The effects of different cold source arrangements (Scheme A-Scheme F), internal heat source structure (Case 1, Case 2, Case 3), internal heat source location (a, b), Darcy number, and Rayleigh number on fluid flow and heat transfer in square cavity are studied. The calculation results show that the arrangement of the cold source has an important influence on the fluid flow and heat transfer. When the cold source is symmetrically distributed, the temperature field and the flow field in the cavity are also symmetrically distributed; under high Rayleigh number, the double upper cold source arrangement of Scheme A can significantly improve the heat transfer intensity in the cavity; the shape of the internal heat source has a great influence on the convective heat transfer in the cavity. Under the high Rayleigh number, case 3 is arranged better. The positions a and b of the internal heat source have obvious influence on the heat transfer in the cavity. The fitting relationship between the average Nusselt number of the hot wall surface and the position a is proposed, and there is an optimal position a (a=0.25), which makes the convective heat transfer in the cavity strongest; the average Nusselt number of the hot wall surface also shows a specific variation law with the change of b value. With the value of b increases, the average Nusselt number of the hot wall surface increases first, then decreases and finally increases.

     

  • [1]
    NIELD D A, BEJAN A.Convection in porous media[M].Hoboken:Wiley-Blackwell, 2013.
    [2]
    AHMED S E, HUSSEIN A K, MOHAMMED H A, et al.Viscous dissipation and radiation effects on MHD natural convection in a square enclosure filled with a porous medium[J].Nuclear Engineering and Design, 2014, 266:34-42. doi: 10.1016/j.nucengdes.2013.10.016
    [3]
    邱伟国, 云和明, 陈宝明, 等.壁面覆盖部分多孔介质方腔自然对流流动的数值模拟[J].节能, 2014(11):19-23.

    QIU W G, YUN H M, CHEN B M, et al.Numerical simulation of natural convection flow in cavity with wall covering part of porous media[J].Energy Conservation, 2014(11):19-23(in Chinese).
    [4]
    YAACOB Z, HASAN M K.Nonstandard finite difference schemes for natural convection in an inclined porous rectangular cavity[C]//International Conference on Electrical Engineering and Informatics.Piscataway, NJ: IEEE Press, 2015: 665-669.
    [5]
    郭照立, 郑楚光.格子Boltzmann方法的原理及应用[M].北京:科学出版社, 2009.

    GUO Z L, ZHENG C G.Theory and applications of lattice Boltzmann method[M].Beijing:Science Press, 2009(in Chinese).
    [6]
    MACHADO R.Numerical simulations of surface reaction in porous media with lattice Boltzmann[J].Chemical Engineering Science, 2012, 69(1):628-643. doi: 10.1016/j.ces.2011.11.037
    [7]
    SHOKOUHMAND H, JAM F, SALIMPOUR M R.Simulation of laminar flow and convective heat transfer in conduits filled with porous media using lattice Boltzmann method[J].International Communications in Heat and Mass Transfer, 2009, 36(4):378-384. doi: 10.1016/j.icheatmasstransfer.2008.11.016
    [8]
    陆威, 王婷婷, 徐洪涛, 等.复合方腔顶盖驱动双扩散混合对流格子Boltzmann模拟[J].工程热物理学报, 2017, 38(3):640-647.

    LU W, WANG T T, XU H T, et al.Lattice Boltzmann simulation of double diffusive mixed convection in a lid-driven composite enclosure[J].Journal of Engineering Thermophysics, 2017, 38(3):640-647(in Chinese).
    [9]
    HUELSZ G, RECHTMAN R.Heat transfer due to natural convection in an inclined square cavity using the lattice Boltzmann equation method[J].International Journal of Thermal Sciences, 2013, 65:111-119. doi: 10.1016/j.ijthermalsci.2012.09.009
    [10]
    ZHAO C Y, DAI L N, TANG G H, et al.Numerical study of natural convection in porous media(metals)using lattice Boltzmann method(LBM)[J].International Journal of Heat and Fluid Flow, 2010, 31(5):925-934. doi: 10.1016/j.ijheatfluidflow.2010.06.001
    [11]
    BOUARNOUNA K, BOUTRA A, RAGUI K, et al.Multiple-relaxation-time lattice Boltzmann model for flow and convective heat transfer in channel with porous media[J].Journal of Statistical Physics, 2019, 174(5):972-991. doi: 10.1007/s10955-018-02219-7
    [12]
    李培生, 李伟, 张莹, 等.倾斜多孔方腔内自然对流非正交MRT-LB数值模拟[J].华南理工大学学报(自然科学版), 2018, 46(1):15-23.

    LI P S, LI W, ZHANG Y, et al.Lattice Boltzmann simulation of natural convection in an inclined porous cavity with a hot square obstacle[J].Journal of Harbin Engineering University(Natural Science Edition), 2018, 46(1):15-23(in Chinese).
    [13]
    BAYTAS A C, POP I.Free convection in a square porous cavity using a thermal nonequilibrium model[J].International Journal of Thermal Sciences, 2002, 41(9):861-870. doi: 10.1016/S1290-0729(02)01379-0
    [14]
    SAEID N H.Conjugate natural convection in a porous enclosure: Effect of conduction in one of the vertical walls[J].International Journal of Thermal Sciences, 2007, 46(6):531-539. doi: 10.1016/j.ijthermalsci.2006.08.003
    [15]
    AL-FARHANY K, TURAN A.Numerical study of double diffusive natural convective heat and mass transfer in an inclined rectangular cavity filled with porous medium[J].International Communications in Heat and Mass Transfer, 2012, 39(2):174-181. doi: 10.1016/j.icheatmasstransfer.2011.11.014
    [16]
    LIU Q, HE Y L, LI Q, et al.A multiple-relaxation-time lattice Boltzmann model for convection heat transfer in porous media[J].International Journal of Heat and Mass Transfer, 2014, 73:761-775. doi: 10.1016/j.ijheatmasstransfer.2014.02.047
    [17]
    LIU Q, HE Y L, DAWSON K A, et al.Lattice Boltzmann simulations of convection heat transfer in porous media[J].Physica A-Statistical Mechanics and Its Applications, 2017, 465:742-753. doi: 10.1016/j.physa.2016.08.010
  • Relative Articles

    [1]LYU Y Z,WAN H M,XU Y M. Dynamic stability analysis of a single-point hanging container[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):419-427 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0036.
    [2]WEI J R,WU Q,WU W,et al. Study on global stability of aluminum alloy honeycomb cylinder under axial compression[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):962-972 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0135.
    [3]WANG C S,ZHANG X Y,ZHAN Z X,et al. Analysis of compression stability and load capacity of thick composite plate structures[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):94-101 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0991.
    [4]LI Wei, ZHAO Zhigang, ZHAO Xiangtang, LI Zixuan, GANG Zheng. Workspace stability evaluation of multi-engine suspension system based on EWM -TOPSIS[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0546
    [5]YANG Hai-feng, LI Zhi-gang, TAN Yue-dong, XIAO Peng-hui, KONG Wei. Development of Ejection Seat-Dummy Model and Analysis of Seat Tip-off Stability[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0654
    [6]XIA C F,WANG X L,LI Z,et al. Field balancing method for rotor system of magnetically suspended control and sensing gyro[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3417-3425 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0852.
    [7]CHEN G,SUN X,LI G X,et al. Analysis and improvement of lateral instability of quasi-biconical lifting reentry spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2800-2809 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0708.
    [8]HAN F Q,ZHANG D Y. Ultrasonic longitudinal torsional and low frequency torsional compound vibration tapping experiment[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1077-1084 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0453.
    [9]GAN W B,ZUO Z J,XIANG J W,et al. Research progress on dynamic stability of rotating variant wing opening and closing process for aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1053-1064 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0469.
    [10]LIN Junting, CHEN Xinzhou. Sliding mode control of magnetic levitation ball systems based on high-gain disturbance observer[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0518
    [11]DUAN Leqiang, LI Lei, WANG Weijie, ZHU Hongye, PANG Weikun, REN Yuan. Dynamics Modeling and Active disturbance rejection control of Magnetically Suspended Universally Stabilized Platform[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0065
    [12]CHENG H J,YANG J F,LIU Z H,et al. Rule-based integrated stability control of multi-axle special vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1794-1805 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0569.
    [13]LIU S S,LUO L,HAN Q H,et al. Study on lateral-directional stability of a practical high lift-to-drag ratio hypersonic vehicle with momentum lift augmentation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3010-3021 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0035.
    [14]LI Tian, ZHAO You-qun, XU Tao, SHEN Ya-wei, LIN Fen. Stability control of vehicles powered by non-pneumatic wheels based on robust optimal sliding mode[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0238
    [15]WANG X L,XU Y F,XUE Y C. Evaluation and optimization of departure flight schedule stability of airport group[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1331-1341 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0462.
    [16]GAO Yang, XU Guo-ning, WANG Sheng, LI Yong-xiang, CAI Rong, YANG Yan-chu. Stability analysis of stratospheric airship energy system[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0020
    [17]XIAO Y,CHEN X,YANG L Y,et al. Analysis of radome error on guidance loop stability[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3066-3074 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0780.
    [18]XING Yufeng, JI Yi, ZHANG Huimin. Advances and challenges in time integration methods[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1692-1701. doi: 10.13700/j.bh.1001-5965.2022.0288
    [19]YANG Yang, WANG Weijie, WANG Zhou, FAN Yahong, XUE Le. Momentum envelope analysis of magnetically suspended control sensitive gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2061-2069. doi: 10.13700/j.bh.1001-5965.2021.0071
    [20]YIN Zengyuan, CAI Yuanwen, REN Yuan, WANG Weijie, CHEN Xiaocen, YU Chunmiao. Decoupled active disturbance rejection control method for magnetically suspended rotor based on state feedback[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1210-1221. doi: 10.13700/j.bh.1001-5965.2021.0021
  • Cited by

    Periodical cited type(3)

    1. 赵芳,张健,孙凤,徐方超,栾博然,刘洋,张晓友. 电火花加工用磁悬浮驱动器控制系统. 沈阳工业大学学报. 2024(01): 82-90 .
    2. 徐程程,徐方超,孙凤,张晓友,金俊杰,栾博然. 电火花加工用磁力驱动器的微定位控制. 西南交通大学学报. 2022(03): 610-617 .
    3. 周振华,黄浩,杜荣华. 基于负刚度结构的低频速度传感器的设计与分析. 传感技术学报. 2020(06): 804-814 .

    Other cited types(6)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(1)

    Article Metrics

    Article views(975) PDF downloads(374) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return