Citation: | LI Jie, FENG Ransheng, YANG Yangzhao, et al. QoE driven adaptation for VR video capturing and transmission[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2385-2392. doi: 10.13700/j.bh.1001-5965.2019.0364(in Chinese) |
In virtual reality (VR) video streaming media transmission, how to further improve user's quality of experience (QoE) under bandwidth-constrained conditions is a huge challenge. In order to improve resource utilization rate and user QoE, a multi-user QoE-driven uplink and downlink joint VR video streaming media adaptive acquisition and transmission system is proposed, which is different from the traditional VR video wireless transmission system. The proposed system considers the uplink transmission part. The video server selects code rate and allocates resources based on the rate adaptation based on the bandwidth information of the uplink channel and the downlink channel and the real-time view information of the user. In addition, we define the problem of QoE-driven rate selection and resource allocation to maximize the QoE value of all users across the system. Finally, we propose an optimal adaptive rate selection algorithm combining the KKT condition and the branch and bound method. The experimental results show that the system can effectively improve the QoE value of the total system users, improve the system performance by 14.27% based on the average uplink allocation, and improve the performance of the VR video rate adaptive algorithm by 23.47%.
[1] |
Cisco.Cisio visual networking index: Forecast and methodology 2016-2021[R].San Jose: Cisco, 2016.
|
[2] |
ZHAO T, LIU Q, CHEN C W.QoE in video transmission:A user experience-driven strategy[J].IEEE Communications Surveys Tutorials, 2017, 19(1):285-302. doi: 10.1109/COMST.2016.2619982
|
[3] |
LI J, FENG R S, LIU Z, et al.Modeling QoE of virtual reality video transmission over wireless networks[C]//Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM).Piscataway, NJ: IEEE Press, 2018: 1-7.
|
[4] |
LIU C, KAN N, ZOU J, et al.Server-side rate adaptation for multi-user 360-degree video streaming[C]//Proceedings of the 25th IEEE International Conference on Image Processing(ICIP).Piscataway, NJ: IEEE, 2018: 3264-3268.
|
[5] |
SODAGAR I.The MPEG-DASH standard for multimedia streaming over the internet[J].IEEE Multimedia, 2011, 18(4):62-67. doi: 10.1109/MMUL.2011.71
|
[6] |
GUO C J, YING C, LIU Z.Optimal multicast of tiled 360 VR video[J].IEEE Wireless Communications Letters, 2019, 8(1):145-148. doi: 10.1109/LWC.2018.2864151
|
[7] |
LIU Y, XU M, LI C, et al.A novel rate control scheme for panoramic video coding[C]//Proceedings of the 2017 IEEE International Conference on Multimedia and Expo(ICME).Piscataway, NJ: IEEE Press, 2017: 691-696.
|
[8] |
XU Z, BAN Y, ZHANG K, et al.Tile-based QoE-driven http/2 streaming system for 360 video[C]//Proceedings of the 2018 IEEE International Conference on Multimedia Expo Workshops(ICMEW).Piscataway, NJ: IEEE Press, 2018: 1-4.
|
[9] |
QIAN F, HAN B, XIAO Q, et al.Flare: Practical viewport-adaptive 360-degree video streaming for mobile devices[C]//Proceedings of the 24th Annual International Conference on Mobile Computing and Networking (MobiCom).New York: ACM, 2018: 99-114.
|
[10] |
CORBILLON X, DEVLIC A, SIMON G, et al.Optimal set of 360-degree videos for viewport-adaptive streaming[C]//Proceedings of the 25th ACM International Conference on Multimedia.New York: ACM, 2018: 943-951.
|
[11] |
GHOSH A, VANEET A, FENG Q.A rate adaptation algorithm for tile-based 360-degree video streaming[EB/OL].(2017-04-26)[2019-09-21].
|
[12] |
XIE L, XU Z, BAN Y, et al.360ProbDASH: Improving QoE of 360 video streaming using tile-based HTTP adaptive streaming[C]//Proceedings of the 25th ACM International Conference on Multimedia.New York: ACM, 2017: 315-323.
|
[13] |
HUNG Y, WANG C, HWANG R.Optimizing social welfare of live video streaming services in mobile edge computing[J/OL].IEEE Transactions on Mobile Computing(2019-02-26)[2019-09-21].
|
[14] |
ZHANG L, SUN L, WANG W, et al.Unlocking the door to mobile social VR:Architecture, experiments and challenges[J].IEEE Network, 2018, 32(1):160-165. doi: 10.1109/MNET.2017.1700014
|
[15] |
KIM H J, SON Y S, KIM J T.KKT-conditions based resource allocation algorithm for DASH streaming service over LTE[C]//2018 IEEE International Conference on Consumer Electronics(ICCE).Piscataway, NJ: IEEE Press, 2018: 1-3.
|
[16] |
XU M, LI C, WANG Z L, et al.Visual quality assessment of panoramic video[EB/OL].(2019-01-15)[2019-07-01].
|
[1] | PENG Yi, SUN Chang, YANG Qingqing, LI Hui, WANG Jianming. Swin Transformer-Based Semantic Image Transmission with Model Division Multiplexing[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0542 |
[2] | ZHU R N,WANG B,TANG C Y. Improvement of terrain following flight adaptive angle method under small field of view conditions[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):676-682 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0057. |
[3] | ZHANG Z B,JING S Z,YUAN S P,et al. Robust analysis of hydrodynamic performance under variable rotation speeds[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1219-1228 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0480. |
[4] | JI G K,WANG R,PENG S F. Person re-identification method based on attention mechanism and CondConv[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):655-662 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0454. |
[5] | GUO Jia, ZHANG Hai-bo, PANG Zhao-jun, DU Zhong-hua. Planning Method for a Multi-debris Removal Mission Considering Space Debris Mass[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0747 |
[6] | LU G,ZHONG T X,GENG J. A Transformer based deep conditional video compression[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):442-448 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0374. |
[7] | CHEN Shijia, YE Jianyuan, GONG Xuan, ZENG Kang, NI Pengcheng. The GPU Resources Self-aware Model Dynamic Deployment Approach[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0464 |
[8] | WANG Y J,SHUI X Y,WANG M Y. Research progress on airport slot allocation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1065-1076 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0425. |
[9] | LU M M,LIU C H,DONG Z L. Dynamic communication resource allocation for multi-UAV area coverage[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2939-2950 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0745. |
[10] | DAI T X,XU Z. Multi-beam LEO satellite user grouping and resource allocation algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2575-2584 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0638. |
[11] | HUANG Jie-yu, ZHANG Hao-wei, XIE Jun-wei, LI Zheng-jie, QI Cheng, DING Zi-hang. A resource optimization allocation algorithm for radar networked system for stealth target tracking[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0782 |
[12] | XIONG F,LI Q,LI J,et al. Time-triggered traffic scheduling-oriented virtual network embedding method[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1982-1990 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0511. |
[13] | XUE Y,HE F,GU X Y. UAV information interaction topology generation considering task allocation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1787-1795 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0486. |
[14] | TANG Jing-min, HUANG Jia-qi, WANG Bing-wen, SONG Yao-lian, YU Gui-cai. Joint optimization scheme of trajectories and resources allocation for UAV aided communication[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0241 |
[15] | WANG Yi-xing, LIU Shuang, WAN Yan-xiao-ru, FENG Chuan-yan, ZHOU Sun-xia, QIAN Chun-ying. Situation awareness model based on resource supply-demand difference and understanding[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0428 |
[16] | LEI Yao-lin, DING Wen-rui, LUO Yi-zhe, WANG Yu-feng, LIU Si-qi, ZHANG Zhi-lan. Trajectory planning and resource allocation methods in UAV data collection missions[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0531 |
[17] | DAI Ye-ying, SUN Rui, DENG Si-yu, JI Li, WANG Yuan-yuan, HUANG Xue-dong. Grid error modeling aided GNSS/IMU integrated navigation comprehensive quality control algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0495 |
[18] | LI J F,ZHAO D Q,WANG D M,et al. A quality evaluation method for wavelet denoising based on combinatorial weighting method[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):718-725 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0303. |
[19] | NIE Liangyi, DING Huafeng, WANG Jun, BI Shusheng. Branch graph method for crank judgement of complex multi-loop linkage[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1863-1874. doi: 10.13700/j.bh.1001-5965.2021.0152 |
[20] | YANG Jingxuan, XU Zhen. Low computational-cost multicast subgrouping for SVC streams[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1278-1286. doi: 10.13700/j.bh.1001-5965.2021.0014 |