Li Guohe, Zhao Qinping. PartitionBlock Method of Feature Selection from Information System[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(3): 255-259. (in Chinese)
Citation: SUN Wenjie, WANG Zhaorui, JIN Shengzhen, et al. An adaptive carrier-to-noise ratio estimation method for GNSS weak signal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2068-2074. doi: 10.13700/j.bh.1001-5965.2020.0372(in Chinese)

An adaptive carrier-to-noise ratio estimation method for GNSS weak signal

doi: 10.13700/j.bh.1001-5965.2020.0372
Funds:

National Natural Science Foundation of China U1931125

National Natural Science Foundation of China 11603041

National Key R & D Program of China 2016YFB0501900

More Information
  • Corresponding author: WANG Zhaorui, E-mail: zhaorui_w@nao.cas.cn
  • Received Date: 30 Jul 2020
  • Accepted Date: 11 Dec 2020
  • Publish Date: 20 Oct 2021
  • The Carrier-to-Noise Ratio (CNR) of Global Navigation Satellite System (GNSS) signals is an important parameter to describe GNSS receiver's performance. In this paper, we derive and analyze two commonly used GNSS signal CNR estimation methods: Variance Summing Method (VSM) and Power Ratio Method (PRM). Meanwhile, we propose an adaptive CNR estimation method which is based on fading factor cubature Kalman filter. We compare the three methods to assess the CNR estimation ability in normal and weak signal environment. The results show that, when signal suddenly changes or signal is weak, the VSM and PRM will produce large estimation errors, while the adaptive CNR estimation methods can still accurately estimate the CNR of signal.

     

  • [1]
    鲁郁. 北斗/GPS双模软件接收机原理与实现技术[M]. 北京: 电子工业出版社, 2016: 197-203.

    LU Y. Principle and implementation technology of Beidou/GPS dual-mode software receiver[M]. Beijing: Publishing House of Electronics Industry, 2016: 197-203(in Chinese).
    [2]
    谢钢. GPS原理与接收机设计[M]. 北京: 电子工业出版社, 2017: 362-364.

    XIE G. Principles of GPS and receiver design[M]. Beijing: Publishing House of Electronics Industry, 2017: 362-364(in Chinese).
    [3]
    蒋君伟, 段晓辉, 林阳. 一种GPS信号载噪比估计的新算法[J]. 系统仿真学报, 2009, 21(24): 7786-7788.

    JIANG J W, DUAN X H, LIN Y. New algorithm for GPS C/N0 estimation[J]. Journal of System Simulation, 2009, 21(24): 7786-7788(in Chinese).
    [4]
    GROVES P D. GPS signal-to-noise measurement in weak signal and high-interference environments[J]. Navigation, 2005, 52(2): 83-94. doi: 10.1002/j.2161-4296.2005.tb01734.x
    [5]
    SHARAWI M S, AKOS D M, ALOI D N. GPS C/N0/estimation in the presence of interference and limited quantization levels[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 227-238. doi: 10.1109/TAES.2007.357129
    [6]
    FALLETTI E, PINI M, PRESTI L L, et al. Assessment on low complexity C/N0 estimators based on M-PSK signal model for GNSS receivers[C]//2008 IEEE/ION Position, Location and Navigation Symposium. Piscataway: IEEE Press, 2008: 167-172.
    [7]
    LASHLEY M. Modeling and performance analysis of GPS vector tracking algorithms[M]. Auburn: Auburn University, 2009: 318-324.
    [8]
    巴晓辉, 刘海洋, 郑睿, 等. 一种有效的GNSS接收机载噪比估计方法[J]. 武汉大学学报(信息科学版), 2011, 36(4): 457-460.

    BA X H, LIU H Y, ZHENG R, et al. An effective carrier-to-noise ratio estimation method for GNSS receivers[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4): 457-460(in Chinese).
    [9]
    徐昌元, 唐小妹, 倪少杰, 等. 电离层闪烁背景下不同载噪比估计算法的性能分析[J]. 全球定位系统, 2016, 41(5): 23-27.

    XU C Y, TANG X M, NI S J, et al. Ionospheric anomalies preceding kumamoto earthquake detected by GNSS[J]. GNSS World of China, 2016, 41(5): 23-27(in Chinese).
    [10]
    王姣, 姜苏洋, 狄世超, 等. GNSS系统中一种低复杂度的载噪比估计算法[J]. 哈尔滨工程大学学报, 2018, 39(6): 1087-1092.

    WANG J, JIANG S Y, DI S C, et al. A low complexity carrier-to-noise ratio estimation algorithm in GNSS systems[J]. Journal of Harbin Engineering University, 2018, 39(6): 1087-1092(in Chinese).
    [11]
    何文涛, 徐建华, 叶甜春. GPS弱信号的自适应载噪比估计算法[J]. 电子技术应用, 2010, 36(6): 111-114.

    HE W T, XU J H, YE T C. Adaptive C/N estimation method of GPS weak signal[J]. Application of Electronic Technology, 2010, 36(6): 111-114(in Chinese).
    [12]
    ARASARATNAM I, HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269. doi: 10.1109%2FTAC.2009.2019800
    [13]
    周东华, 席裕庚, 张钟俊. 非线性系统带次优渐消因子的扩展卡尔曼滤波[J]. 控制与决策, 1990, 5(5): 1-6.

    ZHOU D H, XI Y G, ZHANG Z J. Extended Kalman filter with suboptimal fading factors for nonlinear systems[J]. Control and Decision, 1990, 5(5): 1-6(in Chinese).
    [14]
    鲍水达, 张安, 高飞. 一种新的多渐消因子容积卡尔曼滤波[J]. 计算机测量与控制, 2019, 27(2): 241-245.

    BAO S D, ZHANG A, GAO F. A new multi-decay factor volume Kalman filter[J]. Computer Measurement and Control, 2019, 27(2): 241-245(in Chinese).
    [15]
    朱珍珍. 卫星导航矢量跟踪关键技术研究[D]. 长沙: 国防科学技术大学, 2011: 84-88.

    ZHU Z Z. Research on key techniques of vector tracking for satellite navigation[D]. Changsha: National University of Defense Technology, 2011: 84-88(in Chinese).
  • Relative Articles

    [1]DING L,HU Z W,GUO X D,et al. Test research on icing characteristics of sensors and their influence laws[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):152-160 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.1026.
    [2]ZHANG Y P,FU Q,SHAN G L,et al. Scheduling method for multi-sensor cooperative area search and target tracking[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):850-860 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0277.
    [3]CAI Z H,CHEN W J,ZHAO J,et al. Object detection and obstacle avoidance based on dynamic vision sensor for UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):144-153 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0201.
    [4]LI Li-jian, TANG Shou-qian, YAO Jian-tao, WANG Ying-jia. Compliance modeling and strain analysis of double-hole force sensor[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0775
    [5]GE Wenqing, LI Detong, SONG Yadong, TAN Cao, LI Bo. Displacement sensorlesscontrol of electromagnetic linear actuator based on improved sliding mode observer[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0291
    [6]ZHANG Yiqing, HUANG Tingshuang, LI Yongxiang, YANG Yanchu, XU Guoning. Analysis impact of spherical reflection on solar cell calibration[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0772
    [7]FU Shangyu, YU Tianze, LIN Chunyu, LIU Xianhui, ZHAO Yao. Joint pose calibration algorithm for vehicle surrounding-view systems based on spatiotemporal fusion[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0454
    [8]CAO Ziyu, YANG Jianhua. Nonlinear Optimization-based Online Temporal Calibration of Stereo Camera and IMU in Stereo Visual-Inertial Odometry[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0374
    [9]NIU G C,WANG X N. A multi-task traffic scene detection model based on cross-attention[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1491-1499 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0610.
    [10]ZHAO Y Y,LIN H,LI B Q. Clamping force sensorless control strategies for electromechanical brake systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2711-2720 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0748.
    [11]RAN Hua-ming. Airborne sensor multi-task scheduling algorithm based on slide time window[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0488
    [12]FAN X H,GOU B Y,CHEN T,et al. Hole edge crack monitoring technology of flexible eddy current array sensor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):726-734 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0306.
    [13]LI C H,MA J,YANG Y J,et al. Adaptively robust multi-sensor fusion algorithm based on square-root cubature Kalman filter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):220-228 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0201.
    [14]FU H Q,WU S F,LIU M L,et al. Disturbance-observer based adaptive control for space inertial sensor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2799-2806 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0734.
    [15]HAN X,WANG Y X,CHENG X C,et al. A decentralized multi-sensor fusion estimator using finite memory buffers[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):335-343 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0240.
    [16]DU J H,HU M H,ZHANG W N,et al. Weakly supervised evaluation of airport traffic situation based on metric learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1772-1778 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0568.
    [17]JIANG D N,BA Y J,LI W. Sensor fault detection and data reconstruction method of power supply vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1583-1592 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0501.
    [18]PENG Yan, GUO Junbin, YU Chuanqiang, KE Bing. Calibration method for high precision camera based on plane transformation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1297-1303. doi: 10.13700/j.bh.1001-5965.2021.0015
    [19]LI Wen, CAI Yongqing, CHEN Mengfan, LIU Peng. Optical path simulation and design of NO rapid detection optical cavity structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2146-2152. doi: 10.13700/j.bh.1001-5965.2021.0105
    [20]SHAO Xin, JI Li, ZOU Huaiwu, XIE Yangmin. A parameter calibration method for manipulators based on laser displacement measurement[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2281-2288. doi: 10.13700/j.bh.1001-5965.2021.0093
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.9 %FULLTEXT: 28.9 %META: 68.9 %META: 68.9 %PDF: 2.2 %PDF: 2.2 %FULLTEXTMETAPDF

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views(1132) PDF downloads(127) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return