Volume 47 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
FENG Xing, YAO Yangping, LI Runing, et al. Deformation of high-fill subgrade of airport in mountain areas[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2013-2023. doi: 10.13700/j.bh.1001-5965.2020.0510(in Chinese)
Citation: FENG Xing, YAO Yangping, LI Runing, et al. Deformation of high-fill subgrade of airport in mountain areas[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2013-2023. doi: 10.13700/j.bh.1001-5965.2020.0510(in Chinese)

Deformation of high-fill subgrade of airport in mountain areas

doi: 10.13700/j.bh.1001-5965.2020.0510
Funds:

National Natural Science Foundation of China 51808547

National Natural Science Foundation of China 11672015

Tianjin Municipal Education Commission Scientific Research Project 2019KJ124

the Foundamental Research Funds for the Central Universities 3122014C014

Research Startup Fund of Civil Aviation University of China 2013QD12X

More Information
  • Corresponding author: FENG Xing, E-mail: fxing_sjz@foxmail.com
  • Received Date: 09 Sep 2020
  • Accepted Date: 24 Jan 2021
  • Publish Date: 20 Oct 2021
  • At present, a large number of high-fill projects are used in mountainous airports, and the settlement and deformation of high-fill subgrades is an important issue to be solved. In this paper, based on the Unified Hardening (UH) model, by studying relationships between the stone content and the internal friction angle and cohesion, and based on the extended SMP criterion and transforming stress, the stone content is introduced into the UH model, and the UH model considering stone content is established. The change law of the intersection of the current yield surface and the mean principal stress axis is used as the judgment criterion for loading and unloading of the UH model considering stone content, which makes the unified consideration of hardening and softening be realized. And the semi-implicit back reflection stress update algorithm is adopted. The loading and unloading criterion is applied to the stress update algorithm. And the finite element application of the UH model considering stone content is realized. Then the finite element analysis of the large-scale triaxial test of the soil-stone mixture is carried out by the finite element program of the UH model considering stone content, and the validity of the finite element program is verified by comparing the calculated results of the finite element with the actual test results. Finally, using the finite element program of the UH model considering stone content, the three-dimensional finite element analysis is carried out for the high-fill subgrade of airport in the mountain area, and the vertical displacement curve of the ground settlement monitoring point is obtained. The calculated curves are compared with the curves by the UH model without considering stone content, the Modified Cambridge (MCC) model and the measured data. And the vertical displacement contour, the lateral displacement contour, the pore water pressure contour and the change curve of pore water pressure with time of high-fill subgrade are obtained, and thereby the displacement and pore water pressure change laws of the airport's high-fill subgrade are obtained. The rationality of the UH model considering the stone content in analyzing the deformation of the high-fill subgrade of the mountainous airport is explained.

     

  • loading
  • [1]
    刘宏, 李攀峰, 张倬元. 九寨黄龙机场高填方地基工后沉降预测[J]. 岩土工程学报, 2005, 27(1): 90-93. doi: 10.3321/j.issn:1000-4548.2005.01.015

    LIU H, LI P F, ZHANG Z Y. Prediction of the post-construction settlement of the high embankment of Jiuzhai-Huanglong airport[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 90-93(in Chinese). doi: 10.3321/j.issn:1000-4548.2005.01.015
    [2]
    李秀珍, 许强, 孔纪名, 等. 九寨黄龙机场高填方地基沉降的数值模拟分析[J]. 岩石力学与工程学报, 2005, 24(12): 2188-2193. doi: 10.3321/j.issn:1000-6915.2005.12.031

    LI X Z, XU Q, KONG J M, et al. Numerical modeling analysis of settlements of high fill foundation for Jiuzhai-Huanglong airport[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(12): 2188-2193(in Chinese). doi: 10.3321/j.issn:1000-6915.2005.12.031
    [3]
    陈涛, 郭院成, 谢春庆. 平坦地基上山区高填方路堤变形及稳定性分析[J]. 郑州大学学报(工学版), 2009, 30(3): 39-43. doi: 10.3969/j.issn.1671-6833.2009.03.010

    CHEN T, GUO Y C, XIE C Q. Analysis of deformation and stability of high embankment in flat ground of mountainous area[J]. Journal of Zhengzhou University (Engineering Science), 2009, 30(3): 39-43(in Chinese). doi: 10.3969/j.issn.1671-6833.2009.03.010
    [4]
    ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A. Yielding of clays in state wetter than critical[J]. Geotechnique, 1963, 13(3): 22-53. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg42/ref42&dbid=16&doi=10.1139%2Fcgj-2015-0166&key=10.1680%2Fgeot.1963.13.3.211
    [5]
    YAO Y P, HOU W, ZHOU A N. UH model: Three-dimensional unified hardening model for overconsolidated clays[J]. Geotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
    [6]
    姚仰平, 侯伟, 周安楠. 基于伏斯列夫面的超固结土模型[J]. 中国科学(E辑), 2007, 37(11): 1417-1429.

    YAO Y P, HOU W, ZHOU A N. Constitutive model of over-consolidated clay based on improved Hvorslev envelope[J]. Science in China, Ser. E, 2007, 37(11): 1417-1429(in Chinese).
    [7]
    姚仰平, 李自强, 侯伟, 等. 基于改进伏斯列夫线的超固结土本构模型[J]. 水利学报, 2008, 39(11): 1244-1250. doi: 10.3321/j.issn:0559-9350.2008.11.013

    YAO Y P, LI Z Q, HOU W, et al. Constitutive model of over-consolidated clay based on improved Hvorslev envelope[J]. Journal of Hydraulic Engineering, 2008, 39(11): 1244-1250(in Chinese). doi: 10.3321/j.issn:0559-9350.2008.11.013
    [8]
    YAO Y P, LUO T, SUN D A, et al. A simple 3-D constitutive model for both clay and sand[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 240-246. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC200202026.htm
    [9]
    李广信. 高等土力学[M]. 北京: 清华大学出版社, 2016: 145-146.

    LI G X. Advanced soil mechnics[M]. Beijing: Tsinghua University Press, 2016: 145-146(in Chinese).
    [10]
    郭庆国. 粗粒土的工程特性及应用[M]. 郑州: 黄河水利出版社, 1998: 187-188.

    GUO Q G. Engineering characteristics and application of coarse-grained soil[M]. Zhengzhou: Yellow River Water Conservancy Press, 1998: 187-188(in Chinese).
    [11]
    LINDQUIST E S. The strength and deformation properties of mélange[D]. Berkeley: University of California at Berkeley, 1994: 45-49.
    [12]
    IRFAN T Y, TANG K Y. Effect of the coarse fraction on the shear strength of colluviums in Hong Kong[M]. Hong Kong: Geotechnical Engineering Office, 1993: 58-60.
    [13]
    MEDLEY E W. Systematic characterization of mélange bimrocks and other chaotic soil/rock mixtures[J]. Felsbau-Rock Soil Engineering, 1999, 17(3): 152-162.
    [14]
    徐文杰, 胡瑞林, 岳仲崎, 等. 基于数字图像分析及大型直剪试验的土石混合体含石量与抗剪强度关系研究[J]. 岩石力学与工程学报, 2008, 27(5): 996-1007. doi: 10.3321/j.issn:1000-6915.2008.05.016

    XU W J, HU R L, YUE Z Q, et al. Research on relationship between rock block proportion and shear strength of soil-rock mixtures based on digital image analysis and large direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 996-1007(in Chinese). doi: 10.3321/j.issn:1000-6915.2008.05.016
    [15]
    涂义亮, 刘新荣, 任青阳, 等. 含石量和颗粒破碎对土石混合料强度的影响研究[J]. 岩土力学, 2020, 41(12): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012011.htm

    TU Y L, LIU X R, REN Q Y, et al. The effects of rock contents and particle breakage on strength characteristics of soil-rock aggregate[J]. Rock and Soil Mechanics, 2020, 41(12): 1-10(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012011.htm
    [16]
    冯兴, 姚仰平, 霍海峰. 黄土隧洞变形及稳定性分析[J]. 重庆交通大学学报(自然科学版), 2017, 36(7): 21-28. doi: 10.3969/j.issn.1674-0696.2017.07.04

    FENG X, YAO Y P, HUO H F. Deformation and stability of loess tunnel[J]. Journal of Chongqing Jiaotong University(Natural Science), 2017, 36(7): 21-28(in Chinese). doi: 10.3969/j.issn.1674-0696.2017.07.04
    [17]
    YAO Y P, ZHOU A N, LU D C. Extended transformed stress space for geomaterials and its application[J]. Journal of Engineering Mechanics, 2007, 133(10): 1115-1123. doi: 10.1061/(ASCE)0733-9399(2007)133:10(1115)
    [18]
    姚仰平, 路德春, 周安楠, 等. 广义非线性强度理论及其变换应力空间[J]. 中国科学(E辑), 2004, 34(11): 1283-1299. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200411009.htm

    YAO Y P, LU D C, ZHOU A N, et al. Generalized nonlinear failure theory transformed stress space for geomaterials[J]. Science in China, Ser. E, 2004, 34(11): 1283-1299(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200411009.htm
    [19]
    姚仰平, 路德春, 周安楠. 岩土类材料的变换应力空间及其应用[J]. 岩土工程学报, 2005, 27(1): 24-29. doi: 10.3321/j.issn:1000-4548.2005.01.003

    YAO Y P, LU D C, ZHOU A N. Transformed stress space for geomaterials and its application[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 24-29(in Chinese). doi: 10.3321/j.issn:1000-4548.2005.01.003
    [20]
    熊文林. 非关联塑性切线刚度矩阵的对称表示[J]. 应用数学和力学, 1986, 7(11): 983-991. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX198611003.htm

    XIONG W L. Symmetric formulation of tamgential stiffness for non-associated plasticity[J]. Applied Mathematics and Mechanics, 1986, 7(11): 983-991(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX198611003.htm
    [21]
    罗汀, 姚仰平, 侯伟. 土的本构关系[M]. 北京: 人民交通出版社, 2010: 223-226.

    LUO T, YAO Y P, HOU W. Soil constitutive models[M]. Beijing: China Communication Press, 2010: 223-226(in Chinese).
    [22]
    朱伯芳. 有限单元法原理与应用[M]. 北京: 中国水利水电出版社, 2018: 357-358.

    ZHU B F. Principle and application of finite element method[M]. Beijing: China Water Power Press, 2018: 357-358(in Chinese).
    [23]
    姚仰平, 冯兴, 黄祥, 等. UH模型在有限元分析中的应用[J]. 岩土力学, 2010, 31(1): 237-245. doi: 10.3969/j.issn.1000-7598.2010.01.041

    YAO Y P, FENG X, HUANG X, et al. Application of UH model to finite element analysis[J]. Rock and Soil Mechanics, 2010, 31(1): 237-245(in Chinese). doi: 10.3969/j.issn.1000-7598.2010.01.041
    [24]
    严秋荣, 孙海兴, 邓卫东, 等. 红层软岩土石混合填料的抗剪强度特性研究[J]. 公路交通技术, 2005(3): 31-35. doi: 10.3969/j.issn.1009-6477.2005.03.010

    YAN Q R, SUN H X, DENG W D, et al. Study on shear strength characteristics of red layered weak soil filling[J]. Technology of Highway and Transport, 2005(3): 31-35(in Chinese). doi: 10.3969/j.issn.1009-6477.2005.03.010
    [25]
    李群善. 康定机场北段高填方边坡稳定性及场道沉降变形研究[D]. 成都: 西南交通大学, 2008: 48. http://cdmd.cnki.com.cn/Article/CDMD-10613-2008178792.htm

    LI Q S. The stability of high-fill slope and the pavement deformation on the north of Kangding airport[D]. Chengdu: Southwest Jiaotong University, 2008: 48(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10613-2008178792.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article views(461) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return