Citation: | LU P F,WANG Y,QI Z,et al. Gravity-assist Earth-to-Jupiter transfer trajectories optimization and midcourse correction design in ephemeris model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3445-3455 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0819 |
The Jupiter system exploration has important scientific significance and strategic value, and the Earth-to-Jupiter transfer is the key basis for Jupiter system exploration. The optimal design of Earth-to-Jupiter transfer trajectories is carried out using gravity-assist flight technology, and the midcourse correction strategy is designed to reduce orbit errors during actual flight in the high-precision ephemeris model. First, gravity-assist flight sequences were analyzed through the Tisserand graph. Second, in order to maximize the mass of the probe entering the orbit around Jupiter, a nonlinear programming model is established to optimize the planet-assisted transfer trajectories by considering the planetary ephemeris. Then, the midcourse correction strategy is designed to eliminate actual flight errors of the multiple gravity-assist flight trajectories. Finally, with China’s Jupiter system exploration mission as an example, the optimal and suboptimal transfer solutions of various gravity-assist sequences are obtained by considering the capability of the Long March 5 launch vehicle in the launch window between the year 2034 and 2036. The results show that the optimal solution of the Venus-Earth-Earth-assisted transfer can make the mass of the probe entering the target orbit around Jupiter reach
[1] |
PRUSSING J E. Simple proof of the global optimality of the Hohmann transfer[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(4): 1037-1038. doi: 10.2514/3.20941
|
[2] |
BATTIN R H. An introduction to the mathematics and methods of astrodynamics[M]. Reston: AIAA, 1999: 529-531.
|
[3] |
BREAKWELL J V, GILLESPIE R W, ROSS S. Researches in interplanetary transfer[J]. ARS Journal, 1961, 31(2): 201-208. doi: 10.2514/8.5428
|
[4] |
HULKOWER N D, LAU C O, BENDER D F. Optimum two-impulse transfers for preliminary interplanetary trajectory design[J]. Journal of Guidance, Control, and Dynamics, 1984, 7(4): 458-461. doi: 10.2514/3.19878
|
[5] |
DUAN J H, LIU Y F. Two-dimensional launch window method to search for launch opportunities of interplanetary missions[J]. Chinese Journal of Aeronautics, 2020, 33(3): 965-977. doi: 10.1016/j.cja.2019.12.010
|
[6] |
LION P M, HANDELSMAN M. Primer vector on fixed-time impulsive trajectories[J]. AIAA Journal, 1968, 6(1): 127-132. doi: 10.2514/3.4452
|
[7] |
LI X, QIAO D, CHEN H. Interplanetary transfer optimization using cost function with variable coefficients[J]. Astrodynamics, 2019, 3(2): 173-188. doi: 10.1007/s42064-018-0043-8
|
[8] |
ABDELKHALIK O, MORTARI D. N-impulse orbit transfer using genetic algorithms[J]. Journal of Spacecraft and Rockets, 2007, 44(2): 456-460. doi: 10.2514/1.24701
|
[9] |
陈全, 杨震, 罗亚中. 基于粒子群算法的多脉冲转移轨迹优化[J]. 空间控制技术与应用, 2014, 40(5): 25-30.
CHEN Q, YANG Z, LUO Y Z. Optimization of multi-impulse orbit transfer based on particle swarm optimization algorithm[J]. Aerospace Control and Application, 2014, 40(5): 25-30(in Chinese).
|
[10] |
ZHOU H Y, WANG X G, CUI N G. Fuel-optimal multi-impulse orbit transfer using a hybrid optimization method[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1359-1368. doi: 10.1109/TITS.2019.2905586
|
[11] |
BROUCKE R. The celestial mechanics of gravity assist[C]//Proceedings of the Astrodynamics Conference. Reston: AIAA, 1988: 4220.
|
[12] |
QI Y, XU S J. Mechanical analysis of lunar gravity assist in the Earth–Moon system[J]. Astrophysics and Space Science, 2015, 360(2): 55. doi: 10.1007/s10509-015-2571-5
|
[13] |
QI Y, DE RUITER A. Energy analysis in the elliptic restricted three-body problem[J]. Monthly Notices of the Royal Astronomical Society, 2018, 478(1): 1392-1402. doi: 10.1093/mnras/sty1155
|
[14] |
乔栋, 崔平远, 崔祜涛. 基于圆型限制性三体模型的借力飞行机理研究[J]. 宇航学报, 2009, 30(1): 82-87.
QIAO D, CUI P Y, CUI H T. Research on gravity-assist mechanism in circular restricted three-body problem[J]. Journal of Astronautics, 2009, 30(1): 82-87(in Chinese).
|
[15] |
乔栋, 崔平远, 尚海滨. 基于椭圆型限制性三体模型的借力飞行机理研究[J]. 宇航学报, 2010, 31(1): 36-43.
QIAO D, CUI P Y, SHANG H B. Research on gravity-assist mechanism in elliptic restricted three-body model[J]. Journal of Astronautics, 2010, 31(1): 36-43(in Chinese).
|
[16] |
LONGUSKI J M, WILLIAMS S N. Automated design of gravity-assist trajectories to Mars and the outer planets[J]. Celestial Mechanics and Dynamical Astronomy, 1991, 52(3): 207-220. doi: 10.1007/BF00048484
|
[17] |
STRANGE N J, LONGUSKI J M. Graphical method for gravity-assist trajectory design[J]. Journal of Spacecraft and Rockets, 2002, 39(1): 9-16. doi: 10.2514/2.3800
|
[18] |
OLDS A D, KLUEVER C A, CUPPLES M L. Interplanetary mission design using differential evolution[J]. Journal of Spacecraft and Rockets, 2007, 44(5): 1060-1070. doi: 10.2514/1.27242
|
[19] |
CHEN Y, BAOYIN H X, LI J. Accessibility of main-belt asteroids via gravity assists[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(2): 623-632. doi: 10.2514/1.58935
|
[20] |
FAN Z, HUO M, QI J, et al. Fast initial design of low-thrust multiple gravity-assist three-dimensional trajectories based on the Bezier shape-based method[J]. Acta Astronautica, 2021, 178: 233-240. doi: 10.1016/j.actaastro.2020.09.020
|
[21] |
ARYA V, TAHERI E, JUNKINS J L. Low-thrust gravity-assist trajectory design using optimal multimode propulsion models[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(7): 1280-1294. doi: 10.2514/1.G005750
|
[22] |
KLOSTER K W, PETROPOULOS A E, LONGUSKI J M. Europa orbiter tour design with Io gravity assists[J]. Acta Astronautica, 2011, 68(7-8): 931-946. doi: 10.1016/j.actaastro.2010.08.041
|
[23] |
CAMPAGNOLA S, BUFFINGTON B B, LAM T, et al. Tour design techniques for the Europa clipper mission[J]. Journal of Guidance Control Dynamics, 2019, 42(12): 2615-2626. doi: 10.2514/1.G004309
|
[24] |
陈杨, 宝音贺西, 李俊峰. 木星探测轨道分析与设计[J]. 天文学报, 2012, 53(2): 106-118.
CHEN Y, BAOYIN H X, LI J F. Jupiter exploration mission analysis and trajectory design[J]. Acta Astronomica Sinica, 2012, 53(2): 106-118(in Chinese).
|
[25] |
田百义, 张磊, 周文艳, 等. 木星系及行星际飞越探测的多次借力飞行轨道设计研究[J]. 航天器工程, 2018, 27(1): 25-30.
TIAN B Y, ZHANG L, ZHOU W Y, et al. Research on multiple gravity assist trajectories for a Jovian system exploration and planet flyby mission[J]. Spacecraft Engineering, 2018, 27(1): 25-30(in Chinese).
|
[26] |
陈诗雨, 杨洪伟, 宝音贺西. 木星系探测及行星穿越任务轨迹初步设计[J]. 深空探测学报, 2019, 6(2): 189-194.
CHEN S Y, YANG H W, BAOYIN H X. Preliminary design for the trajectories of Jovian and planetary mission[J]. Journal of Deep Space Exploration, 2019, 6(2): 189-194(in Chinese).
|
[27] |
杨彬, 杨洪伟, 李爽, 等. 基于不同动力引力辅助模型的木星转移轨道设计[J]. 上海航天, 2019, 36(3): 55-61.
YANG B, YANG H W, LI S, et al. Jupiter transfer trajectory design based on different powered gravity assist models[J]. Aerospace Shanghai, 2019, 36(3): 55-61(in Chinese).
|
[28] |
CAMPAGNOLA S, RUSSELL R P. Endgame problem part 2: Multibody technique and the tisserand-poincare graph[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(2): 476-486. doi: 10.2514/1.44290
|
[29] |
SMITH D A. Space launch system (SLS) mission planner’s guide: ESD 30000[R]. Huntsville: National Aeronautics and Space Administration, 2018: 35.
|
[30] |
Space Exploration Technologies Corporation. Falcon 9 launch vehicle payload user’s guide: 09-S-0347[R]. Hawthorne: SpaceX, 2008: 19-24.
|
[31] |
BREAKWELL J V. Fuel requirements for crude interplanetary guidance[J]. Advances in the Astronautical Sciences, 1960, 5: 53-65.
|
[32] |
倪彦硕, 施伟璜, 杨洪伟, 等. 利用Breakwell间距比法制定行星际探测中途修正策略[J]. 深空探测学报, 2016, 3(1): 83-89.
NI Y S, SHI W H, YANG H W, et al. Midcourse correction strategy of interplanetary exploration with breakwell spacing ratio method[J]. Journal of Deep Space Exploration, 2016, 3(1): 83-89(in Chinese).
|
[33] |
LIANG J J, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281-295. doi: 10.1109/TEVC.2005.857610
|