Volume 50 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
LU P F,WANG Y,QI Z,et al. Gravity-assist Earth-to-Jupiter transfer trajectories optimization and midcourse correction design in ephemeris model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3445-3455 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0819
Citation: LU P F,WANG Y,QI Z,et al. Gravity-assist Earth-to-Jupiter transfer trajectories optimization and midcourse correction design in ephemeris model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3445-3455 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0819

Gravity-assist Earth-to-Jupiter transfer trajectories optimization and midcourse correction design in ephemeris model

doi: 10.13700/j.bh.1001-5965.2022.0819
Funds:  National Natural Science Foundation of China (11872007);The Fundamental Research Funds for the Central Universities
More Information
  • Corresponding author: E-mail:ywang@buaa.edu.cn
  • Received Date: 29 Sep 2022
  • Accepted Date: 09 Nov 2022
  • Available Online: 25 Nov 2022
  • Publish Date: 23 Nov 2022
  • The Jupiter system exploration has important scientific significance and strategic value, and the Earth-to-Jupiter transfer is the key basis for Jupiter system exploration. The optimal design of Earth-to-Jupiter transfer trajectories is carried out using gravity-assist flight technology, and the midcourse correction strategy is designed to reduce orbit errors during actual flight in the high-precision ephemeris model. First, gravity-assist flight sequences were analyzed through the Tisserand graph. Second, in order to maximize the mass of the probe entering the orbit around Jupiter, a nonlinear programming model is established to optimize the planet-assisted transfer trajectories by considering the planetary ephemeris. Then, the midcourse correction strategy is designed to eliminate actual flight errors of the multiple gravity-assist flight trajectories. Finally, with China’s Jupiter system exploration mission as an example, the optimal and suboptimal transfer solutions of various gravity-assist sequences are obtained by considering the capability of the Long March 5 launch vehicle in the launch window between the year 2034 and 2036. The results show that the optimal solution of the Venus-Earth-Earth-assisted transfer can make the mass of the probe entering the target orbit around Jupiter reach 4340.8 kg, which is about 1300 kg higher than that of the Hohmann transfer. Monte-Carlo simulations validate the midcourse correction strategy in the ephemeris model. The results show that under various errors, the final B-plane miss distances are less than 50 km, and the correction pulse consumption is small, which proves that the designed gravity-assist transfer trajectories and midcourse correction strategy can realize the Earth-to-Jupiter transfer mission in the high-precision mechanical environment and can provide a reference for the design of China’s Jupiter system exploration mission.

     

  • loading
  • [1]
    PRUSSING J E. Simple proof of the global optimality of the Hohmann transfer[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(4): 1037-1038. doi: 10.2514/3.20941
    [2]
    BATTIN R H. An introduction to the mathematics and methods of astrodynamics[M]. Reston: AIAA, 1999: 529-531.
    [3]
    BREAKWELL J V, GILLESPIE R W, ROSS S. Researches in interplanetary transfer[J]. ARS Journal, 1961, 31(2): 201-208. doi: 10.2514/8.5428
    [4]
    HULKOWER N D, LAU C O, BENDER D F. Optimum two-impulse transfers for preliminary interplanetary trajectory design[J]. Journal of Guidance, Control, and Dynamics, 1984, 7(4): 458-461. doi: 10.2514/3.19878
    [5]
    DUAN J H, LIU Y F. Two-dimensional launch window method to search for launch opportunities of interplanetary missions[J]. Chinese Journal of Aeronautics, 2020, 33(3): 965-977. doi: 10.1016/j.cja.2019.12.010
    [6]
    LION P M, HANDELSMAN M. Primer vector on fixed-time impulsive trajectories[J]. AIAA Journal, 1968, 6(1): 127-132. doi: 10.2514/3.4452
    [7]
    LI X, QIAO D, CHEN H. Interplanetary transfer optimization using cost function with variable coefficients[J]. Astrodynamics, 2019, 3(2): 173-188. doi: 10.1007/s42064-018-0043-8
    [8]
    ABDELKHALIK O, MORTARI D. N-impulse orbit transfer using genetic algorithms[J]. Journal of Spacecraft and Rockets, 2007, 44(2): 456-460. doi: 10.2514/1.24701
    [9]
    陈全, 杨震, 罗亚中. 基于粒子群算法的多脉冲转移轨迹优化[J]. 空间控制技术与应用, 2014, 40(5): 25-30.

    CHEN Q, YANG Z, LUO Y Z. Optimization of multi-impulse orbit transfer based on particle swarm optimization algorithm[J]. Aerospace Control and Application, 2014, 40(5): 25-30(in Chinese).
    [10]
    ZHOU H Y, WANG X G, CUI N G. Fuel-optimal multi-impulse orbit transfer using a hybrid optimization method[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1359-1368. doi: 10.1109/TITS.2019.2905586
    [11]
    BROUCKE R. The celestial mechanics of gravity assist[C]//Proceedings of the Astrodynamics Conference. Reston: AIAA, 1988: 4220.
    [12]
    QI Y, XU S J. Mechanical analysis of lunar gravity assist in the Earth–Moon system[J]. Astrophysics and Space Science, 2015, 360(2): 55. doi: 10.1007/s10509-015-2571-5
    [13]
    QI Y, DE RUITER A. Energy analysis in the elliptic restricted three-body problem[J]. Monthly Notices of the Royal Astronomical Society, 2018, 478(1): 1392-1402. doi: 10.1093/mnras/sty1155
    [14]
    乔栋, 崔平远, 崔祜涛. 基于圆型限制性三体模型的借力飞行机理研究[J]. 宇航学报, 2009, 30(1): 82-87.

    QIAO D, CUI P Y, CUI H T. Research on gravity-assist mechanism in circular restricted three-body problem[J]. Journal of Astronautics, 2009, 30(1): 82-87(in Chinese).
    [15]
    乔栋, 崔平远, 尚海滨. 基于椭圆型限制性三体模型的借力飞行机理研究[J]. 宇航学报, 2010, 31(1): 36-43.

    QIAO D, CUI P Y, SHANG H B. Research on gravity-assist mechanism in elliptic restricted three-body model[J]. Journal of Astronautics, 2010, 31(1): 36-43(in Chinese).
    [16]
    LONGUSKI J M, WILLIAMS S N. Automated design of gravity-assist trajectories to Mars and the outer planets[J]. Celestial Mechanics and Dynamical Astronomy, 1991, 52(3): 207-220. doi: 10.1007/BF00048484
    [17]
    STRANGE N J, LONGUSKI J M. Graphical method for gravity-assist trajectory design[J]. Journal of Spacecraft and Rockets, 2002, 39(1): 9-16. doi: 10.2514/2.3800
    [18]
    OLDS A D, KLUEVER C A, CUPPLES M L. Interplanetary mission design using differential evolution[J]. Journal of Spacecraft and Rockets, 2007, 44(5): 1060-1070. doi: 10.2514/1.27242
    [19]
    CHEN Y, BAOYIN H X, LI J. Accessibility of main-belt asteroids via gravity assists[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(2): 623-632. doi: 10.2514/1.58935
    [20]
    FAN Z, HUO M, QI J, et al. Fast initial design of low-thrust multiple gravity-assist three-dimensional trajectories based on the Bezier shape-based method[J]. Acta Astronautica, 2021, 178: 233-240. doi: 10.1016/j.actaastro.2020.09.020
    [21]
    ARYA V, TAHERI E, JUNKINS J L. Low-thrust gravity-assist trajectory design using optimal multimode propulsion models[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(7): 1280-1294. doi: 10.2514/1.G005750
    [22]
    KLOSTER K W, PETROPOULOS A E, LONGUSKI J M. Europa orbiter tour design with Io gravity assists[J]. Acta Astronautica, 2011, 68(7-8): 931-946. doi: 10.1016/j.actaastro.2010.08.041
    [23]
    CAMPAGNOLA S, BUFFINGTON B B, LAM T, et al. Tour design techniques for the Europa clipper mission[J]. Journal of Guidance Control Dynamics, 2019, 42(12): 2615-2626. doi: 10.2514/1.G004309
    [24]
    陈杨, 宝音贺西, 李俊峰. 木星探测轨道分析与设计[J]. 天文学报, 2012, 53(2): 106-118.

    CHEN Y, BAOYIN H X, LI J F. Jupiter exploration mission analysis and trajectory design[J]. Acta Astronomica Sinica, 2012, 53(2): 106-118(in Chinese).
    [25]
    田百义, 张磊, 周文艳, 等. 木星系及行星际飞越探测的多次借力飞行轨道设计研究[J]. 航天器工程, 2018, 27(1): 25-30.

    TIAN B Y, ZHANG L, ZHOU W Y, et al. Research on multiple gravity assist trajectories for a Jovian system exploration and planet flyby mission[J]. Spacecraft Engineering, 2018, 27(1): 25-30(in Chinese).
    [26]
    陈诗雨, 杨洪伟, 宝音贺西. 木星系探测及行星穿越任务轨迹初步设计[J]. 深空探测学报, 2019, 6(2): 189-194.

    CHEN S Y, YANG H W, BAOYIN H X. Preliminary design for the trajectories of Jovian and planetary mission[J]. Journal of Deep Space Exploration, 2019, 6(2): 189-194(in Chinese).
    [27]
    杨彬, 杨洪伟, 李爽, 等. 基于不同动力引力辅助模型的木星转移轨道设计[J]. 上海航天, 2019, 36(3): 55-61.

    YANG B, YANG H W, LI S, et al. Jupiter transfer trajectory design based on different powered gravity assist models[J]. Aerospace Shanghai, 2019, 36(3): 55-61(in Chinese).
    [28]
    CAMPAGNOLA S, RUSSELL R P. Endgame problem part 2: Multibody technique and the tisserand-poincare graph[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(2): 476-486. doi: 10.2514/1.44290
    [29]
    SMITH D A. Space launch system (SLS) mission planner’s guide: ESD 30000[R]. Huntsville: National Aeronautics and Space Administration, 2018: 35.
    [30]
    Space Exploration Technologies Corporation. Falcon 9 launch vehicle payload user’s guide: 09-S-0347[R]. Hawthorne: SpaceX, 2008: 19-24.
    [31]
    BREAKWELL J V. Fuel requirements for crude interplanetary guidance[J]. Advances in the Astronautical Sciences, 1960, 5: 53-65.
    [32]
    倪彦硕, 施伟璜, 杨洪伟, 等. 利用Breakwell间距比法制定行星际探测中途修正策略[J]. 深空探测学报, 2016, 3(1): 83-89.

    NI Y S, SHI W H, YANG H W, et al. Midcourse correction strategy of interplanetary exploration with breakwell spacing ratio method[J]. Journal of Deep Space Exploration, 2016, 3(1): 83-89(in Chinese).
    [33]
    LIANG J J, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281-295. doi: 10.1109/TEVC.2005.857610
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(7)

    Article Metrics

    Article views(303) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return