ZHANG X J,XU C,TIAN F,et al. Utility-enhanced synthesis method of differentially private trajectories[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3615-3631 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.1013
Citation: ZHANG X J,XU C,TIAN F,et al. Utility-enhanced synthesis method of differentially private trajectories[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3615-3631 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.1013

Utility-enhanced synthesis method of differentially private trajectories

doi: 10.13700/j.bh.1001-5965.2022.1013
Funds:  National Natural Science Foundation of China (61762058,61901201,61861024); Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University; Natural Science Foundation of Gansu Province (21JR7RA282);The Education Department of Gansu Province: Industrial Support Plan Project (2022CYZC-38); The Fundamental Research Fund for the Central Universities (GK202103090); Natural Science Basic Research Program of Shaanxi (2022JM-329)
More Information
  • Corresponding author: E-mail:xuejunzhang@mail.lzjtu.cn
  • Received Date: 27 Dec 2022
  • Accepted Date: 03 Feb 2023
  • Available Online: 17 Mar 2023
  • Publish Date: 15 Mar 2023
  • Trajectory data is valuable for a variety of applications. However, it has been a long-standing challenge to share and utilize trajectory data while protecting users’ privacy. Currently, the prevailing shared trajectory privacy-preserving methods are to generate complete synthetic trajectories that are highly similar to real trajectories based on differential privacy, which results in poor utility of synthesis trajectories and is vulnerable to location privacy inference attacks. To address these problems, this paper proposed a utility-enhanced synthesis method of differentially private trajectories (UtiE-DPT). By dividing the real trajectory dataset spatially, this method constructed a fine-grained adaptive density grid structure to discretize the real trajectory and designed a Markov transition matrix, trajectory travel distribution, and trajectory length distribution calculation model suitable for the adaptive density grid structure, so as to extract key statistical features to maintain the utility of real trajectories and thus enhance the utility of synthetic trajectories. To preserve the users’ privacy, the differential privacy technique was employed to perturb these key statistical features. Finally, a synthetic trajectory against inference attacks was generated according to the extracted features and anti-attack constraint strategy. Comprehensive experiments on real datasets and simulation datasets show that compared with the existing trajectory synthesis privacy protection methods such as DP-Star and AdaTrace, the UtiE-DPT not only protects trajectory privacy and resists location privacy inference attacks but also improves the utility of synthetic trajectories. Without considering the inference attacks, the query error of UtiE-DPT for generating synthetic trajectories is 21%–27% lower than AdaTrace and 32%–53% lower than DP-Star. After resisting the inference attacks, although the robustness of the synthetic trajectory is reduced by about 1%–2% compared with AdaTrace, the query error is reduced by 16%–21% compared with AdaTrace, achieving a better balance between privacy protection and utility.

     

  • [1]
    张学军, 桂小林, 伍忠东. 位置服务隐私保护研究综述[J]. 软件学报, 2015, 26(9): 2373-2395.

    ZHANG X J, GUI X L, WU Z D. Privacy preservation for location-based services: A survey[J]. Journal of Software, 2015, 26(9): 2373-2395 (in Chinese).
    [2]
    CHEN Z B, SHEN H T, ZHOU X F. Discovering popular routes from trajectories[C]// 2011 IEEE 27th International Conference on Data Engineering. Piscataway: IEEE Press, 2011: 900-911.
    [3]
    XU F L, ZHANG P Y, LI Y. Context-aware real-time population estimation for metropolis[C]// Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York: ACM, 2016: 1064-1075.
    [4]
    ZHOU C H, SU F Z, PEI T, et al. COVID-19: Challenges to GIS with big data[J]. Geography and Sustainability, 2020, 1(1): 77-87. doi: 10.1016/j.geosus.2020.03.005
    [5]
    DING D Z, ZHANG M, PAN X D, et al. Geographical feature extraction for entities in location-based social networks[C]// Proceedings of the 2018 World Wide Web Conference on World Wide Web. New York: ACM, 2018: 833-842.
    [6]
    LIU Q, YU J, HAN J M, et al. Differentially private and utility-aware publication of trajectory data[J]. Expert Systems with Applications, 2021, 180: 115120. doi: 10.1016/j.eswa.2021.115120
    [7]
    YUAN S L, PI D C, ZHAO X D, et al. Differential privacy trajectory data protection scheme based on R-tree[J]. Expert Systems with Applications, 2021, 182: 115215. doi: 10.1016/j.eswa.2021.115215
    [8]
    WANG Y F, LI M Z, LUO S S, et al. LRM: A location recombination mechanism for achieving trajectory: Anonymity privacy protection[J]. IEEE Access, 2019, 7: 182886-182905. doi: 10.1109/ACCESS.2019.2960008
    [9]
    LIU Z P, ZHAO X, DONG Y W, et al. Trajectory rotation privacy protection algorithm based on k anonymity[J]. Journal of Computer and Communications, 2018, 6(2): 36-47. doi: 10.4236/jcc.2018.62004
    [10]
    张少波, 王国军, 刘琴, 等. 基于多匿名器的轨迹隐私保护方法[J]. 计算机研究与发展, 2019, 56(3): 576-584. doi: 10.7544/issn1000-1239.2019.20180033

    ZHANG S B, WANG G J, LIU Q, et al. Trajectory privacy protection method based on multi-anonymizer[J]. Journal of Computer Research and Development, 2019, 56(3): 576-584 (in Chinese). doi: 10.7544/issn1000-1239.2019.20180033
    [11]
    陈传明, 林文诗, 俞庆英, 等. 一种基于单点收益的轨迹隐私保护方法[J]. 电子学报, 2020, 48(1): 143-152.

    CHEN C M, LIN W S, YU Q Y, et al. A trajectory privacy-preserving method based on single point gain[J]. Acta Electronica Sinica, 2020, 48(1): 143-152 (in Chinese).
    [12]
    LIN C Y. Suppression techniques for privacy-preserving trajectory data publishing[J]. Knowledge-Based Systems, 2020, 206: 106354. doi: 10.1016/j.knosys.2020.106354
    [13]
    叶阿勇, 孟玲玉, 赵子文, 等. 基于预测和滑动窗口的轨迹差分隐私保护机制[J]. 通信学报, 2020, 41(4): 123-133. doi: 10.11959/j.issn.1000-436x.2020049

    YE A Y, MENG L Y, ZHAO Z W, et al. Trajectory differential privacy protection mechanism based on prediction and sliding window[J]. Journal on Communications, 2020, 41(4): 123-133 (in Chinese). doi: 10.11959/j.issn.1000-436x.2020049
    [14]
    袁水莲, 皮德常, 胥萌. 基于差分隐私的轨迹隐私保护方法[J]. 电子学报, 2021, 49(7): 1266-1273. doi: 10.12263/DZXB.20200827

    YUAN S L, PI D C, XU M. Trajectory privacy protection method based on differential privacy[J]. Acta Electronica Sinica, 2021, 49(7): 1266-1273 (in Chinese). doi: 10.12263/DZXB.20200827
    [15]
    ZHAO X D, PI D C, CHEN J F. Novel trajectory privacy-preserving method based on prefix tree using differential privacy[J]. Knowledge-Based Systems, 2020, 198: 105940. doi: 10.1016/j.knosys.2020.105940
    [16]
    GURSOY M E, LIU L, TRUEX S, et al. Utility-aware synthesis of differentially private and attack-resilient location traces[C]// Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018: 196-211.
    [17]
    KONSTANTINO C, CATUSCIA P, MARCO S. A predictive differentially-private mechanism for mobility traces[C]//Proceedings of International Symposium on Privacy Enhancing Technologies. Berlin: Springer, 2014: 21-41.
    [18]
    陈思, 付安民, 苏铓, 等. 基于差分隐私的轨迹隐私保护方案[J]. 通信学报, 2021, 42(9): 54-64. doi: 10.11959/j.issn.1000-436x.2021168

    CHEN S, FU A M, SU M, et al. Trajectory privacy protection scheme based on differential privacy[J]. Journal on Communications, 2021, 42(9): 54-64 (in Chinese). doi: 10.11959/j.issn.1000-436x.2021168
    [19]
    李凤华, 张翠, 牛犇, 等. 高效的轨迹隐私保护方案[J]. 通信学报, 2015, 36(12): 114-123. doi: 10.11959/j.issn.1000-436x.2015320

    LI F H, ZHANG C, NIU B, et al. Efficient scheme for user’s trajectory privacy[J]. Journal on Communications, 2015, 36(12): 114-123 (in Chinese). doi: 10.11959/j.issn.1000-436x.2015320
    [20]
    LIU X Y, CHEN J M, XIA X F, et al. Dummy-based trajectory privacy protection against exposure location attacks[C]//International Conference on Web Information Systems and Applications. Berlin: Springer, 2019: 368-381.
    [21]
    BINDSCHAEDLER V, SHOKRI R. Synthesizing plausible privacy-preserving location traces[C]// 2016 IEEE Symposium on Security and Privacy. Piscataway: IEEE Press, 2016: 546-563.
    [22]
    HE X, CORMODE G, MACHANAVAJJHALA A, et al. DPT[J]. Proceedings of the VLDB Endowment, 2015, 8(11): 1154-1165. doi: 10.14778/2809974.2809978
    [23]
    GURSOY M E, LIU L, TRUEX S, et al. Differentially private and utility preserving publication of trajectory data[J]. IEEE Transactions on Mobile Computing, 2019, 18(10): 2315-2329. doi: 10.1109/TMC.2018.2874008
    [24]
    CUNNINGHAM T, CORMODE G, FERHATOSMANOGLU H. Privacy-preserving synthetic location data in the real world[C]// 17th International Symposium on Spatial and Temporal Databases. New York: ACM, 2021: 23-33.
    [25]
    YANG J Y, CHENG X, SU S, et al. Collecting individual trajectories under local differential privacy[C]// 2022 23rd IEEE International Conference on Mobile Data Management. Piscataway: IEEE Press, 2022: 99-108.
    [26]
    DU Y T, HU Y J, ZHANG Z K, et al. LDPTrace: Locally differentially private trajectory synthesis[J]. Proceedings of the VLDB Endowment, 2023, 16(8): 1897-1909. doi: 10.14778/3594512.3594520
    [27]
    SHAO M L, LI J X, YAN Q B, et al. Structured sparsity model based trajectory tracking using private location data release[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 18(6): 2983-2995.
    [28]
    DWORK C, KENTHAPADI K, MCSHERRY F, et al. Our data, ourselves: Privacy via distributed noise generation[M]// Annual International Conference on the Theory and Applications of Cryptographic Trchniques. Berlin: Springer, 2006: 486-503.
    [29]
    MCSHERRY F D. Privacy integrated queries: An extensible platform for privacy-preserving data analysis[C]// Proceedings of the 2009 ACM SIGMOD International Conference on Management of data. New York: ACM, 2009: 19-30.
    [30]
    BRINKHOFF T. A framework for generating network-based moving objects[J]. GeoInformatica, 2002, 6(2): 153-180. doi: 10.1023/A:1015231126594
    [31]
    ZHENG Y, ZHANG L Z, XIE X, et al. Mining interesting locations and travel sequences from GPS trajectories[C]// Proceedings of the 18th International Conference on World Wide Web. New York: ACM, 2009: 791-800.
  • Relative Articles

    [1]LIU Y S,TANG X M,REN X M. Prediction of aircraft surface trajectory based on the GRU-IKF model with attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):1028-1036 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0164.
    [2]DOU L,LI X K,ZHANG H L,et al. Fixed time trajectory tracking control of forward-tilting morphing aerospace vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):1005-1017 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0152.
    [3]ZHU Chaoqun, LIU Shuhui. Nonfragile Asynchronous Control of T-S Fuzzy Markov Jump Systems under Hybrid Cyber-Attacks[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0349
    [4]CHEN H T,SU Z K,LI C T,et al. Trajectory design for straight-circulating flight transition of aerial recovery towing system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2565-2574 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0692.
    [5]TIAN M Y,SHEN Z J. Trajectory planning of re-entry gliding vehicle in a class of uncertain environment[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2514-2523 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0640.
    [6]YE Yi-qiao, SHEN Hai-dong, LIU Yan-bin, GAO Ze-peng, KONG Xiang, CHEN Jin-bao. Integrated design of hypersonic aircraft wing layout and mission trajectory[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0650
    [7]LI J G,CHEN X,DONG Y F,et al. RTPN interception guidance law for maneuvering target based on collaborative filtering trajectory prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):86-96 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0211.
    [8]MA A H,PAN S. Edge cloud service migration algorithm based on Markov decision process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1931-1939 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0499.
    [9]REN G J,HE J X. Green trajectory optimization of aircraft in terminal area[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3402-3409 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0830.
    [10]JING Quan, LI Mingtao, WANG Youliang. Optimization and Search Sequence for Transfer Trajectory Status in Callisto Exploration Mission[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0158
    [11]ZHANG Jun, HUANG Minghui, WANG Yuelin, YANG Xing, YE Min, JIA Yongle. Unmanned trajectory tracking strategy for aircraft tug with MPC method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023-0431
    [12]LI Xinyan, CHEN Xintao, ZHAO Huimin, DENG Wu. A Federated Learning Flight Operation Data Sharing Method for Balancing Privacy and Utility[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0413
    [13]QU Yi, WANG Sheng, FENG Hui, LIU Qiang. Trajectory optimization of high-altitude balloon in collaborative observation of near-space network and ground network[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0471
    [14]ZOU Xu, LIU Zhen-bao, ZHAO Wen, WANG Li-na. Optimization method of transition trajectory for tail-sitter unmanned aerial vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0458
    [15]WANG Chao, LI Wen-qing, SUN Shi-lei, XU Chen-yang. Muti-aircraft low-carbon trajectories cooperative planning for point merge operation[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0575
    [16]MA Su-gang, DUAN Shuai-peng, HOU Zhi-qiang, YU Wang-sheng, PU Lei, YANG Xiao-bao. Multi-object tracking algorithm based on dual-branch feature enhancement and multi-level trajectory association[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0472
    [17]WANG Yang-jie, LONG Teng, LI Jun-zhi, XU Guang-tong, SUN Jing-liang. Reentry trajectory planning for hypersonic morphing vehicles using penalty sequence convex programming[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0283
    [18]GONG K Q,WEI H K,LI J W,et al. Trajectory optimization algorithm of skipping missile based on deep reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1383-1393 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0436.
    [19]WANG Yingxun, SONG Xinyu, ZHAO Jiang, CAI Zhihao. Anti-disturbance trajectory tracking control method for aggressive quadrotors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1806-1817. doi: 10.13700/j.bh.1001-5965.2022.0216
    [20]ZHANG Xuejun, BAO Junda, HE Fucun, GAI Jiyang, TIAN Feng, HUANG Haiyan. A fingerprint indoor localization method against adversarial sample attacks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2087-2101. doi: 10.13700/j.bh.1001-5965.2021.0789
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views(318) PDF downloads(25) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return