Citation: | LI Y,ZHOU Z Y,CAI J. Extensible evaluation model of aircraft tire hydroplaning risk based on connection cloud[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):705-711 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0136 |
Since aircraft tire hydroplaning can be influenced by several factors, and the characteristic of evaluation indexes can be described as fuzzy, random, and discrete, a hydroplaning risk evaluation model based on extension theory and connection cloud was established, so as to quantify the transformation of hydroplaning evaluation indexes among different classification levels. The numerical characteristics of the connection cloud were calculated according to the leveling criteria of evaluation indexes, and the connection cloud within a limited range was generated. The extensible matrix of the connection cloud was built by using certainty degrees. In this way, the final risk level could be obtained on the basis of variable weights, which demonstrated the dynamic connection between elements to be evaluated and risk level. The case analysis data was obtained by the fluid-solid coupling simulation of aircraft tire hydroplaning to make up for the lack of variable conditions in the classic hydroplaning test. The analysis results show that the evaluation conclusions of sample 1 and sample 3 are consistent based on the traditional normal cloud model and extensible connection cloud model. The hydroplaning risk level of sample 2 is given as Ⅲ by using the proposed model in this paper. Therefore, the risk control is considered more restrict under the same parameter condition. The confidence factor of the above sample risk assessment is less than 0.01, and the credibility of the evaluation results is high. The proposed model in this paper provides an alternative method for random-fuzzy and uncertainty analysis involving multiple incompatibility indexes. Hence, the defect of the normal cloud model in simulating the distribution of evaluation indexes within a limited range can be overcome.
[1] |
赵安家, 孙丽莹, 孟哲理. 飞机轮胎滑水与预防控制措施研究综述[J]. 飞机设计, 2015, 35(5): 46-51.
ZHAO A J, SUN L Y, MENG Z L. A search for mechanism and preventability measure of the aircraft tire hydroplaning[J]. Aircraft Design, 2015, 35(5): 46-51(in Chinese).
|
[2] |
蔡靖, 许诤. 沟槽磨损对飞机轮胎滑水影响仿真分析[J]. 中国民航大学学报, 2020, 38(2): 38-43. doi: 10.3969/j.issn.1674-5590.2020.02.008
CAI J, XU Z. Simulation analysis on influence of groove abrasion on aircraft hydroplaning[J]. Journal of Civil Aviation University of China, 2020, 38(2): 38-43(in Chinese). doi: 10.3969/j.issn.1674-5590.2020.02.008
|
[3] |
许诤. 考虑道面平整度的飞机轮胎滑水安全问题研究[D]. 天津: 中国民航大学, 2019: 10-23.
XU Z. Study on water skiing safety of aircraft tires considering pavement smoothness[D]. Tianjin: Civil Aviation University of China, 2019: 10-23(in Chinese).
|
[4] |
张恒. 轮胎与湿滑道面相互作用下的飞机滑水行为研究[D]. 天津: 中国民航大学, 2018: 62-66.
ZHANG H. Study on aircraft water skiing behavior under the interaction between tire and wet road surface[D]. Tianjin: Civil Aviation University of China, 2018: 62-66(in Chinese).
|
[5] |
朱兴一, 庞亚凤, 杨健, 等. 湿滑条件下基于真实纹理道面的机轮着陆滑水行为解析[J]. 中国公路学报, 2020, 33(10): 159-170. doi: 10.3969/j.issn.1001-7372.2020.10.010
ZHU X Y, PANG Y F, YANG J, et al. Analysis on the hydroplaning of aircraft tire under real texture pavement conditions[J]. China Journal of Highway and Transport, 2020, 33(10): 159-170(in Chinese). doi: 10.3969/j.issn.1001-7372.2020.10.010
|
[6] |
刘芳兵. 湿滑跑道飞机侧风着陆滑行安全研究[D]. 天津: 中国民航大学, 2020: 45-47.
LIU F B. Study on the safety of aircraft landing and taxiing in crosswind on wet runway[D]. Tianjin: Civil Aviation University of China, 2020: 45-47(in Chinese).
|
[7] |
TREMBLAY L, METIVET M, MEUNIER F, et al. Method and system for aircraft sideslip guidance: US11054437[P]. 2021-07-06.
|
[8] |
李岳, 宗辉杭, 蔡靖, 等. 飞机轮组滑水行为与道面积水附加阻力[J]. 北京航空航天大学学报, 2023, 49(5): 1099-1107.
LI Y, ZONG H H, CAI J, et al. Hydroplaning behavior of aircraft wheel group and additional resistance due to accumulated water on pavement[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(5): 1099-1107(in Chinese).
|
[9] |
李岳, 胡宇祺, 蔡靖, 等. 湿滑道面飞机着陆滑水风险量化分析[J]. 南京航空航天大学学报, 2022, 54(6): 1138-1144.
LI Y, HU Y Q, CAI J, et al. Quantification analysis of hydroplaning risks of aircraft landing on wet pavement[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(6): 1138-1144(in Chinese).
|
[10] |
FWA T F, PASINDU H R, ONG G P. Critical rut depth for pavement maintenance based on vehicle skidding and hydroplaning consideration[J]. Journal of Transportation Engineering, 2012, 138(4): 423-429. doi: 10.1061/(ASCE)TE.1943-5436.0000336
|
[11] |
张兆宁, 石峰. 基于组合赋权云模型的塔台管制系统运行安全评估[J]. 安全与环境学报, 2024, 24(4): 1254-1265.
ZHANG Z N, SHI F. Operational safety assessment of tower control system based on combined weighted cloud model[J]. Journal of Safety and Environment, 2024, 24(4): 1254-1265(in Chinese).
|
[12] |
史佳辉, 徐吉辉, 陈玉金, 等. 基于交互作用矩阵多维云模型的飞机重着陆风险评估方法研究[J]. 系统工程与电子技术, 2021, 43(10): 3026-3032. doi: 10.12305/j.issn.1001-506X.2021.10.39
SHI J H, XU J H, CHEN Y J, et al. Research on risk assessment method of aircraft heavy landing based on interaction matrix-multidimensional cloud model[J]. Systems Engineering and Electronics, 2021, 43(10): 3026-3032(in Chinese). doi: 10.12305/j.issn.1001-506X.2021.10.39
|
[13] |
唐家文, 董兵, 王超峰. 基于云模型的空管安全运行保障能力评价[J]. 航空工程进展, 2021, 12(4): 59-67.
TANG J W, DONG B, WANG C F. Evaluation on safe operation support ability of air traffic management based on cloud model[J]. Advances in Aeronautical Science and Engineering, 2021, 12(4): 59-67(in Chinese).
|
[14] |
李岳, 胡宇祺, 蔡靖, 等. 基于变权重-正态云模型的飞机轮胎滑水风险研究[J]. 北京航空航天大学学报, 2023, 49(9): 2299-2305.
LI Y, HU Y Q, CAI J, et al. Hydroplaning risk of aircraft tire based on variable weight theory-normal cloud model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(9): 2299-2305(in Chinese).
|
[15] |
周义蛟, 郭基联, 周舟. 基于云模型与组合赋权法的飞机保障性评估研究[C]//2017年首届航空保障设备发展论坛. 北京: 中国航空航天工具协会, 中国航空学会航空维修工程专业分会, 2017: 142-148.
ZHOU Y J, GUO J L, ZHOU Z. A study on military aircraft supportability assessment based on cloud model and game theory[C]//Proceedings of the 2017 1st Aviation Support Equipment Development Forum. Beijing: China Aerospace Tools Association, Aviation Maintenance Engineering Branch of the Chinese Aerospace Society, 2017: 142-148(in Chinese).
|
[16] |
叶琼, 李绍稳, 张友华, 等. 云模型及应用综述[J]. 计算机工程与设计, 2011, 32(12): 4198-4201.
YE Q, LI S W, ZHANG Y H, et al. Cloud model and application overview[J]. Computer Engineering and Design, 2011, 32(12): 4198-4201(in Chinese).
|
[17] |
李德毅, 刘常昱. 论正态云模型的普适性[J]. 中国工程科学, 2004, 6(8): 28-34. doi: 10.3969/j.issn.1009-1742.2004.08.006
LI D Y, LIU C Y. Study on the universality of the normal cloud model[J]. Engineering Science, 2004, 6(8): 28-34(in Chinese). doi: 10.3969/j.issn.1009-1742.2004.08.006
|
[18] |
刘俊杰, 张瑞瑞, 叶英豪, 等. 基于云模型的航空器地面滑行错误事件风险分析[J]. 中国民航飞行学院学报, 2022, 33(5): 51-56. doi: 10.3969/j.issn.1009-4288.2022.05.011
LIU J J, ZHANG R R, YE Y H, et al. Risk analysis of aircraft ground taxiing error event based on cloud model[J]. Journal of Civil Aviation Flight University of China, 2022, 33(5): 51-56(in Chinese). doi: 10.3969/j.issn.1009-4288.2022.05.011
|
[19] |
汪明武, 王霄, 龙静云, 等. 基于多维联系正态云模型的泥石流危险性评价[J]. 应用基础与工程科学学报, 2021, 29(2): 368-375.
WANG M W, WANG X, LONG J Y, et al. Risk assessment of debris flow based on multidimensional connection normal cloud model[J]. Journal of Basic Science and Engineering, 2021, 29(2): 368-375(in Chinese).
|
[20] |
汪明武, 朱其坤, 赵奎元, 等. 基于有限区间联系云的围岩稳定性评价模型[J]. 岩土力学, 2016, 37(增刊1): 140-144.
WANG M W, ZHU Q K, ZHAO K Y, et al. Stability evaluation model of surrounding rock based on limited interval connection cloud[J]. Rock and Soil Mechanics, 2016, 37(Sup 1): 140-144(in Chinese).
|
[21] |
马丽叶, 张涛, 卢志刚, 等. 基于变权可拓云模型的区域综合能源系统综合评价[J]. 电工技术学报, 2022, 37(11): 2789-2799.
MA L Y, ZHANG T, LU Z G, et al. Comprehensive evaluation of regional integrated energy system based on variable weight extension cloud model[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2789-2799(in Chinese).
|
[22] |
蔡文, 杨春燕, 何斌. 可拓学基础理论研究的新进展[J]. 中国工程科学, 2003, 5(2): 80-87. doi: 10.3969/j.issn.1009-1742.2003.02.013
CAI W, YANG C Y, HE B. New development of the basic theory of extenics[J]. Engineering Science, 2003, 5(2): 80-87(in Chinese). doi: 10.3969/j.issn.1009-1742.2003.02.013
|
[23] |
关晓吉. 基于可拓联系云模型的隧道塌方风险等级评价方法[J]. 中国安全生产科学技术, 2018, 14(11): 186-192. doi: 10.11731/j.issn.1673-193x.2018.11.030
GUAN X J. Evaluation method on risk grade of tunnel collapse based on extension connection cloud model[J]. Journal of Safety Science and Technology, 2018, 14(11): 186-192(in Chinese). doi: 10.11731/j.issn.1673-193x.2018.11.030
|
[24] |
牛亚东, 张思祥, 田广军, 等. 机场跑道摩擦系数影响因素研究[J]. 应用力学学报, 2021, 38(2): 715-720. doi: 10.11776/cjam.38.02.D158
NIU Y D, ZHANG S X, TIAN G J, et al. Research on influencing factors of friction coefficient in airport runway[J]. Chinese Journal of Applied Mechanics, 2021, 38(2): 715-720(in Chinese). doi: 10.11776/cjam.38.02.D158
|
[25] |
王迎超, 靖洪文, 张强, 等. 基于正态云模型的深埋地下工程岩爆烈度分级预测研究[J]. 岩土力学, 2015, 36(4): 1189-1194.
WANG Y C, JING H W, ZHANG Q, et al. A normal cloud model-based study of grading prediction of rockburst intensity in deep underground engineering[J]. Rock and Soil Mechanics, 2015, 36(4): 1189-1194(in Chinese).
|
[26] |
宗一鸣. 湿滑道面条件下轮胎力学行为与飞机着陆安全问题研究[D]. 天津: 中国民航大学, 2017: 19-30.
ZONG Y M. Research on tire mechanical behavior and aircraft landing safety under wet road surface conditions[D]. Tianjin: Civil Aviation University of China, 2017: 19-30(in Chinese).
|
[27] |
OH C W, KIM T W, JEONG H Y, et al. Hydroplaning simulation for a straight-grooved tire by using FDM, FEM and an asymptotic method[J]. Journal of Mechanical Science and Technology, 2008, 22(1): 34-40. doi: 10.1007/s12206-007-1004-y
|
[1] | LIU C J,QIAO Z,YAN H W,et al. Semantic segmentation network of remote sensing images based on dual path supervision[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):732-741 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0155. |
[2] | YANG Jingyu, LYU Panjie, DANG Jianwu, WANG Feng, HUO Jiuyuan. CTFI-Net: A remote sensing image change detection method based on feature interaction and alignment[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0432 |
[3] | LI J Q,SHI P. Optimization of LEO remote sensing constellation with enhanced regional coverage[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3912-3920 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0878. |
[4] | JIN L,YANG S L. Fault-tolerant control of spacecraft attitude with prescribed performance based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2404-2412 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0666. |
[5] | FAN Zhi-wen, SONG Xiao-juan, LU: Shu-feng, YUE Bao-zeng. Fixed-time sliding mode fault-tolerant control for liquid-filled spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0736 |
[6] | YAN Kun, ZHAO Jin-ze, CHEN Chao-bo, GAO Song, CAO Kai. Neural network-based fault tolerant control for unmanned helicopter with multiple actuator faults[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0699 |
[7] | LIU Sheng, JIN Xuepeng, GAO Feng, GAN Yanhai. Sparse Attention and Deformable Feature Cross Fusion-Based Multi-source Remote Sensing Image Classification Method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0480 |
[8] | LI Lu, CHEN Ke-yan, LIU Chen-yang, SHI Zhen-wei. An anchor-free optical remote sensing image ship detection method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0852 |
[9] | LI H G,WANG Y F,YANG L C. Meta-learning-based few-shot object detection for remote sensing images[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2503-2513 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0637. |
[10] | SHANG K,ZHANG Y L,ZHANG F Z. Architecture of smart parking lot based on digital twin technology[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2029-2038 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0624. |
[11] | DAI X L,CHENG G,LU G Y,et al. Tethering behavior detection architecture based on RTT measurement of TCP flows[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1414-1423 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0463. |
[12] | YANG Jun, ZHANG Jin-ying. U-shaped semantic segmentation network of high-resolution remote sensing images embedded with the self-attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0269 |
[13] | WANG Jia-yi, GAO Feng, ZHANG Tian-ge, GAN Yan-hai. Multi-Source Remote Sensing Image Classification Based on Wavelet Transform and Parallel Attention[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0329 |
[14] | ZHAO J Y,HU J,YAO J Y,et al. EHA fault diagnosis and fault tolerant control based on adaptive neural network robust observer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1209-1221 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0416. |
[15] | GAO Y T,ZHANG J D. Intelligent orbit determination based on remote sensing image of ontology knowledge base[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1053-1062 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0417. |
[16] | HU Kai, ZHAO Jian, LIU Yu, NIU Yukai, JI Gang. Images inpainting via structure guidance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1269-1277. doi: 10.13700/j.bh.1001-5965.2021.0004 |
[17] | LIU Guoqiang, FANG Sheng, LI Zhe. A full-scale feature aggregation network for remote sensing image change detection[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1464-1470. doi: 10.13700/j.bh.1001-5965.2021.0522 |
[18] | CHENG Keyang, RONG Lan, JIANG Senlin, ZHAN Yongzhao. Double drive adaptive super-resolution reconstruction method of remote sensing images for object detection[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1343-1352. doi: 10.13700/j.bh.1001-5965.2021.0517 |
[19] | LIANG Fengchao, TAN Shuang, HUANG Gang, FAN Jiankai, LIN Zhe, KANG Xiaojun. Design and implementation of a high precision 6-DOF parallel platform for a space optical remote sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1332-1342. doi: 10.13700/j.bh.1001-5965.2021.0224 |
[20] | XU Aiming, HUANG Yuxing, SHEN Qiu. Hyperspectral image compression method based on 3D Saab transform[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1505-1514. doi: 10.13700/j.bh.1001-5965.2021.0521 |