Citation: | Nie Peng, Chen Xin. Prediction of tool VB value based on PCA and BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(3): 364-367,373. (in Chinese) |
[1] 康晶,冯长建,胡红英.刀具磨损监测及破损模式的识别[J].振动、测试与诊断,2009,29(1):5-9 Kang Jing,Feng Changjian,Hu Hongying.Tool wear monitoring and pattern recognition of tool failure[J].Journal of Vibration,Measurement & Diagnosis,2009,29(1):5-9(in Chinese) [2] Tamura M,Tsujita S.A study on the number of principal components and sensitivity of fault detection using PCA[J].Computers and Chemical Engineering,2007,31(9):1035-1046 [3] Balazinski M,Czogala E,Jemielniak K,et al.Tool condition monitoring using artificial intelligence methods[J].Engineering Applications of Artificial Intelligence ,2002,15:73-80 [4] 郑金兴,张铭钧,孟庆鑫.多传感器数据融合技术在刀具状态监测中的应用[J].传感器与微系统,2007,26(4):90-93 Zheng Jinxing,Zhang Mingjun,Meng Qingxin.Application of multi-sensor data fusion in tool wear monitoring[J].Transducer and Microsystem Technologies,2007,26(4):90-93(in Chinese) [5] Li R Y,Rong G.Fault isolation by partial dynamic principal component analysis in dynamic process[J].Chinese Journal of Chemical Engineering,2006,14(4):486-493 [6] 朱松青,史金飞.状态监测与故障诊断中的主元分析法[J].机床与液压,2007,35(1):241-243 Zhu Songqing,Shi Jinfei.PCA approach to condition monitoring and fault diagnosis[J].Machine Tool & Hydraulics,2007,35(1):241-243(in Chinese) [7] Ghosh N,Ravi Y B,Patra A,et al.Estimation of tool wear during CNC milling using neural network-based sensor fusion [J].Mechanical Systems and Signal Processing,2007,21(1):466-479 [8] 张德丰.MATLAB神经网络仿真与应用[M].北京:电子工业出版社,2009:168-174 Zhang Defeng.MATLAB neural network simulator and application [M].Beijing:Electronics Industry Press,2009:168-174(in Chinese)
|