JIN Hong, ZHANG Hong-yue. Robust Fault Diagnosis of Integrated Navigation System[J]. Journal of Beijing University of Aeronautics and Astronautics, 2000, 26(1): 26-29. (in Chinese)
Citation: Cai Yuanwen, Shen Gongxun, Yu Xiaohonget al. On orbital maneuver window for servicing spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(6): 663-666. (in Chinese)

On orbital maneuver window for servicing spacecraft

  • Received Date: 13 May 2009
  • Publish Date: 30 Jun 2010
  • The development and implement of space technology made the on-orbital service be possible. On account of kinds of constraints-affection, the maneuver time and time period should be chosen carefully for the servicing spacecraft (SSC) to provide on-orbital services. The concept of maneuver window was put forward and defined, also its constraints was analyzed. The calculation of the maneuver window between circular orbits under the energy limit was discussed with emphasis. The energy-save drifting maneuver window and the time-saving quick maneuver window were studied separately according to the emergency degree of the service mission. Simulation results indicate, under the condition of limited energy and unlimited time, that the co-orbit deployment has more maneuver opportunity than the other modes, and maneuver energy is the key constraint for maneuver window.

     

  • Relative Articles

    [1]TAN T X,TENG Y,WANG C Y. Research on pre-curved spiral wound pneumatic soft gripper[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):616-624 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0010.
    [2]LI F,LI Z H,CHEN A G. Boltzmann-Rykov model equation gas-kinetic unified algorithm and nozzle flow[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):553-562 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0054.
    [3]ZHANG Y M,DAI Y T,WEI R K,et al. Experiment on dynamic response alleviation of a wing with variable-camber flexible trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3239-3249 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0761.
    [4]SHAO Z Z,ZHENG K,DONG S,et al. Design of double bending rotary ultrasonic elliptical vibration machining system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2912-2918 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0712.
    [5]LIU S Y,YANG H L,ZHANG Z G,et al. Vibration control of flexible spacecraft with output constraints and external disturbances[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1560-1567 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0622.
    [6]ZHANG P H,CHEN H Y,ZHANG J,et al. Passive flow control for weapon bay at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2913-2920 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0790.
    [7]CHENG Z Y,YANG Y X,ZHANG X C,et al. Rapid evaluation method for aerodynamic characteristics of distributed electric propulsion aircraft concept scheme[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3047-3058 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0771.
    [8]WANG Guang-han, SONG Chen, YANG Chao. Influence of airfoil uncertainty on aerodynamic characteristics and shape inspection method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0647
    [9]LIN J Z,ZHOU L,WU P,et al. Rapid prediction technology of missile aerodynamic characteristics based on PINN model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2669-2678 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0738.
    [10]BAI L Y,WU Z G,YANG C. Nonlinear flutter modes and flutter suppression of an all-movable fin with freeplay[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2361-2373 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0162.
    [11]HAN X,SUN Z F,GENG D X,et al. Experiment research on high-speed ultrasonic vibration milling of titanium alloy[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1707-1714 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0519.
    [12]CHENG Yi, ZHAO Jin-rui, HUANG Shui-lin, YU Zhi-hao, DENG Xu-dong. Research on dynamic characteristics of distributed multi-rotor/tilting wing aeroelastic coupling[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0253
    [13]HE Z P,ZHOU J X,XIN J,et al. Unsteady flow characteristics of turbine rotor passage under rim seal effect[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):273-283 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0223.
    [14]HE Z P,ZHOU J X,XIN J,et al. Endwall profiling of turbine blade hub with rim seal[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2596-2607 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0728.
    [15]CHENG Xiao-quan, CAI Mo-quan, WANG Song-wei. Study progress of gap sealing structure for aircraft movable wing[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0397
    [16]ZHANG Qingsong, LI Dongqi, YANG Juan. Effect of vibration on cyclic and thermal runaway characteristics of lithium ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0267
    [17]XIAO R Y,YU J,MA Z X. Applicability of convolutional autoencoder in reduced-order model of unsteady compressible flows[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3445-3455 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0085.
    [18]CHEN Z L,LU Z X,XIAO T H,et al. Effect of local oscillation on aerodynamics of thin airfoil in Mars environment[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2938-2950 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0032.
    [19]XIE C C,ZHANG D Y,AN C. Reduced order method for large flexible wing structure based on dynamic response data[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1319-1330 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0439.
    [20]LIU Yanbin, WANG Xuesheng, QIN Xinya, WANG Hao, CHEN Qinzhu, ZHAO Sai. Design and characteristics of reverse direct-acting high-pressure reducing valve for pneumatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1164-1173. doi: 10.13700/j.bh.1001-5965.2021.0292
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3739) PDF downloads(1115) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return