Citation: | Chen Diansheng, Shao Zhihao, Lei Xusheng, et al. Multiscale fyzzy-adaptive Kalman filtering methods for MEMS gyros random drift[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(2): 246-250. (in Chinese) |
[1] 张海鹏,房建成.MEMS陀螺仪短时漂移特性实验研究[J].中国惯性技术学报,2007, 15(1):100-104 Zhang Haipeng, Fang Jiancheng. Short-time drift characteristic of MEMS gyroscope[J]. Journal of Chinese Inertial Technology, 2007, 15(1):100-104(in Chinese) [2] 徐丽娜,邓正隆.陀螺仪漂移特性的小波分析[J].中国惯性技术学报,2001,9(3):57-60 Xu Lina, Deng Zhenglong. Wavelet analysis on gyro drift rate[J]. Journal of Chinese Inertial Technology, 2001, 9(3):57-60(in Chinese) [3] 赵世峰,张海,沈小蓉,等. MEMS陀螺随机噪声的多尺度时间序列建模[J]. 中国惯性技术学报,2006,14(5):78-80 Zhao Shifeng, Zhang Hai, Shen Xiaorong,et al.Modeling of MEMS gyros random noise based on multiscale timeseries[J]. Journal of Chinese Inertial Technology,2006,14(5):78-80(in Chinese) [4] 付梦印,邓志红,张继伟.Kalman滤波理论及其在导航系统中的应用[M].北京:科学出版社,2004:92-94 Fu Mengyin, Deng Zhihong, Zhang Jiwei. Kalman filtering theory and application in navigation system[M]. Beijing: Science Press, 2004:92-94(in Chinese) [5] 刘涛,曾祥利,曾军.实用小波分析入门[M].北京:国防工业出版社,2006:40-42 Liu Tao, Zeng Xiangli, Zeng Jun. Practical wavelet analysis[M]. Beijing: National Defense Industry Press, 2006: 40-42(in Chinese) [6] 汤巍,李士心,刘鲁源,等.关于陀螺信号处理中小波基选取的研究[J].中国惯性技术学报,2002,10(5):28-30 Tang Wei, Li Shixin, Liu Luyuan, et al.Select of wavelet basis in gyro signal processing[J]. Journal of Chinese Inertial Technology,2002, 10(5):28-30(in Chinese) [7] 尚捷.MIMU及其与GPS组合系统设计与实验研究 .北京:清华大学精密仪器与机械学系,2005 Shang Jie. Design and experimental study on MIMU and its integrated system with GPS . Beijing:Instruments Science and Technology,Tsinghua University, 2005(in Chinese) [8] Zhang Santong,Wei Xueye.Fuzzy adaptive Kalman filter for marine ins/gps navigation Proceedings of the second international conference on machine learning and cybernetics. Xi’an: IEEE, 2003:2634-2637 [9] 马野,王孝通,付建国.基于模糊卡尔曼滤波量测噪声自适应校正的方法研究[J].中国惯性技术学报,2005,13(2):24-26 Ma Ye, Wang Xiaotong, Fu Jianguo. Adaptive adjustment based on measurement noise of fuzzy Kalman filtering[J]. Journal of Chinese Inertial Technology, 2005, 13(2):24-26(in Chinese)
|