Wang Su, Zhou Feng, Zhang Yingliet al. Numerical simulation of intersection line welding in installation pedestal on aeroengine combustion chamber[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(8): 986-990. (in Chinese)
Citation: Ding Shuiting, Wei Xia, Tao Zhi, et al. Heat transfer analysis using ANN with experimental data of 180° turn channels with rib turbulators[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(04): 401-404. (in Chinese)

Heat transfer analysis using ANN with experimental data of 180° turn channels with rib turbulators

  • Received Date: 15 May 2006
  • Publish Date: 30 Apr 2007
  • The heat transfer character inside the 180° turn channel with variable cross-section and different rib turbulators was studied by experiment. The channel is the middle part of a gas turbine blade. The data set evaluated by the experiment was processed by dividing the channel into several sections. A feed-forward neural network based on back-propagation algorithm (BP) was evolved with levenberg-marquardt(LM) algorithm and Bayesian regularization, and a model was established for the result referred before using BP net. It is validated by being compared with curve regression that it is available to use artificial neural networks (ANN) to predict heat transfer character of channel inside a gas turbine blade. And it-s much more efficient than curve regression.

     

  • [1] 周开利,康耀红.神经网络模型及其MATLAB程序设计[M].北京:清华大学出版社,2005 Zhou Kaili,Kang Yaohong. Model of neural net work and design with Matlab[M]. Beijing:Publishing Company of Tsinghua University,2005(in Chinese) [2] 刘湘云,丁水汀,陶智,等.横肋变截面U通道内换热特性的实验研究[J].工程热物理学报,2004,25(5):858-860 Liu Xiangyun, Ding Shuiting, Tao Zhi, et al. Experimental study of heat transfer characteristics in the U shaped channels with variable cross-section and rib [J]. Journal of Engineering Thermophysics, 2004, 25(5):858-860(in Chinese) [3] Hagen M T, Menhaj M B. Training feed-forward networks with the Levenberg-Marquardt algorithm IEEE Trains Neural Networks,1994,5(6):989-993 [4] Foresee F D, Hagan M T. Gauss-Newton approximation to Bayesian regularization Proceedings of the 1997 International Joint Conference on Neural Networks,1997:1930-1935
  • Relative Articles

    [1]CHEN Q,AN C,XIE C C,et al. Large deformation prediction and geometric nonlinear aeroelastic analysis based on machine learning algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):943-952 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0111.
    [2]TIAN D K,ZHANG J W,JIN L,et al. Design and analysis of morphing wing mechanism based on equilateral Bennett mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):742-752 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0139.
    [3]JI N,LIU J,WANG H R,et al. Simulation analysis and experimental study on stiffness and fatigue life fluctuation of leaf spring rubber bearings[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1726-1734 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0263.
    [4]PEI H N,CHEN Y F,BAI Z H,et al. Analysis of high load injury of thoracolumbar spine in pilots during ejection process[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):102-112 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0957.
    [5]CHEN Shi, XU He-ming, SUN Kai, XU Yi-han, ZHANG Yi-shang. Prediction of creep strain of turbine blades based on finite element nodes[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0639
    [6]LI Zhi-qiang, WANG Yang, XIN Li-biao. Structural Design and Aerodynamic Performance Analysis of Gradient Hexagonal Deformable Wing Ribs[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0669
    [7]LAI J Y,GUAN W Q,LUO G Z,et al. Design of rectangular cross-section spring anti-reverse device for a certain type of aviation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1868-1876 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0750.
    [8]HU D D,ZHANG Z T,NIU G C. Lane line detection incorporating CBAM mechanism and deformable convolutional network[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2150-2160 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0601.
    [9]GENG Z W,ZHANG J,KONG N,et al. Design and analysis of space repeatable mechanical locking and electromagnetic unlocking mechanisms[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3947-3956 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0918.
    [10]YANG Z J,ZHANG C F,ZHAO R J,et al. Thermal deformation analysis and experimental verification of spatial deployable antenna hinge[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):243-249 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0219.
    [11]FU T Y,YANG N,GU Y F,et al. Characterization of influence of fiber arrangement on CFRP induction heating curing process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):198-207 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0259.
    [12]HE T Y,DONG Y,WANG H,et al. Design and optimization of modular parabolic deployable mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2473-2481 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0652.
    [13]YANG Z J,WANG G,ZHAO R J,et al. Dynamic analysis of deployment impact of trim-wing mechanism of Mars entry capsules[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):422-429 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0234.
    [14]GONG Xiaoquan, WU Xiaojun, TANG Jing, LI Ming, ZHANG Jian. Application of r-grid adaptive for shock capturing in discontinuous Galerkin finite element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1889-1898. doi: 10.13700/j.bh.1001-5965.2021.0046
    [15]FU Baiheng, WANG Weijie, WANG Yuanqin, FAN Yahong, NIE Chen, JIA Haipeng. Design and analysis of high precision for spherical Lorentz force magnetic bearing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2222-2229. doi: 10.13700/j.bh.1001-5965.2021.0103
    [16]MA Runmei, ZHAO Xiang, CHEN Xiaozhu, LI Shuangxi, YANG Haichao. End face deformation and friction and wear of high-speed dry friction mechanical seal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1174-1182. doi: 10.13700/j.bh.1001-5965.2021.0005
    [17]GU Sucheng, WANG Baoxing, LIU Juncheng, LI Wei, CAO Yi. Deformation and end contact force of fiber-reinforced soft gripper[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 447-456. doi: 10.13700/j.bh.1001-5965.2019.0251
    [18]YANG Juntan, QIU Zhiping, LYU Zheng, LI Qi. Heat conduction analysis for simplified model of large scale space deployable structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(3): 625-631. doi: 10.13700/j.bh.1001-5965.2015.0222
    [19]Zhang Yidu, Zhang Hongwei. Finite element simulation of machining deformation for aeronautical monolithic component[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(2): 188-192.
    [20]Dong Zhaowei, Zhang Yidu, Liu Shengyong. Residual stress simulation and analysis of milling process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(07): 762-765.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2640) PDF downloads(948) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return