HUANG Jun, HUAI Jin-peng, WU Zheet al. Optimization Selection in Conceptual Design of Advanced Trainer Aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(6): 656-659. (in Chinese)
Citation: Liu Xiangning, Xiang Jinwu. Study of aeroelastic tailoring of high-aspect-ratio flexible composite wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(12): 1403-1407. (in Chinese)

Study of aeroelastic tailoring of high-aspect-ratio flexible composite wing

  • Received Date: 16 Dec 2005
  • Publish Date: 31 Dec 2006
  • The nonlinear government equations of the flutter problem of high-aspect-ratio flexible composite wing were derived from the most general aeroelasticequations with wing′s structure geometrical and aerodynamic nonlinearity being considered. Then the gradients of flutter speed and frequency of wing with respect to the design variables were deduced with analytical method. The influence of the composite wing′s configuration and ply angle on the flutter speed was revealed. It was concluded that the composite structure configuration that caused negative bending twist coupling was beneficial to wing′s flutter performances. An optimization design of a high-aspect-ratio flexible composite wing model was done with the flutter speed as object function and the composite plies as design variables. The best configuration and plies were obtained and the results obtained with analytical gradients of this paper and numerical difference gradients were compared at the same time.

     

  • [1] Shirk M H, Hertz T J, Weisshaar T A. Aeroelastic tailoring-theory, practice and promise[J]. J Aircraft, 1986, 23(1):6-18 [2] Hollowell S J, Dugundji J. Aeroelastic flutter and divergence of stiffness coupled, graphite/epoxy cantilevered plates[J]. J Aircraft, 1984, 21(1):69-76 [3] Tischer V A, Venkayya V B. Ply orientation as a variable in multidisciplinary optimization . AIAA Paper 92-4793, 1944 [4] Patil M J. Aeroelastic tailoring of composite box beams . AIAA-97-0015,1997 [5] 修英姝, 崔德刚. 复合材料蜂窝夹层结构的优化设计[J]. 北京航空航天大学学报, 2004, 30(9):855-858 Xiu Yingshu, Cui Degang. Optimal design of composite sandwich structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(9):855-858(in Chinese) [6] Patil M J, Hodges D H. On the importance of aerodynamic and structural geometrical nonlinearities in aeroelastic behavior of high-aspect-ratio wings . AIAA-2000-1448,2000 [7] Tang D, Dowell E H. Experimental and theoretical study on aeroelastic response of high-aspect-ratio wings[J]. AIAA Journal, 2001, 39(8):1430-1441. [8] Patil M J, Hodges D H, Cesnik C E S. Characterizing the effects of geometrical nonlinearities on aeroelastic behavior of high-aspect-ratio wing Proceedings of the International Forum on Aeroelasticity and Structural Dynamics. Virginia:CEAS/AIAA/ICASE/NASE Langley, 1999 [9] Forsching H W. 沈史扬译.气动弹性力学原理[M]. 上海:上海科学技术文献出版社, 1982 Forsching H W. Translated by Shen Shiyang,Theory of aeroelasticity[M]. Shang Hai:Shanghai Scientific and Technical Literature Publishers, 1982(in Chinese) [10] Eastep F E, Tischler V A, Venkayya V B, et al. Aeroelastic tailoring of composite structures[J]. J Aircraft, 1999, 36(6):1041-1047 [11] Armanios E A, Badir A M. Free vibration analysis of anisotropic thin-walled closed section beams . AIAA-94-1327-CP,1994
  • Relative Articles

    [1]MA J L,LIU Y H,MA Z P,et al. Lightweight lip reading method based on decoupling homogeneous self-knowledge distillation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3709-3719 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0931.
    [2]WANG X L,YIN H,HE M. Potential conflict prediction of mobile targets in airfield areas based on LSTM[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1850-1860 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0505.
    [3]LI Bowen, LEI Xiaoyong. Flight task recognition and action segmentation based on SVM[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0635
    [4]WANG Luofeng, CHEN Renliang, ZHAO Yu. Fuzzy anti-swing controller for improving handling quality of helicopter slung load operation[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0265
    [5]LYU Yuzhu. Study on Flight Characteristics and Speed Limit of Helicopter with Slung Load[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0563
    [6]TAN J F,YANG Y X,ZHANG W G,et al. Influence of crosswind on helicopter brownout[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3111-3122 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0794.
    [7]ZHEN X D,WANG Z A,HU R C,et al. Aircraft flight qualities of short take-off and vertical landing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1576-1585 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0413.
    [8]WANG R P,SONG X,CHEN K,et al. Pedestrian trajectory prediction method based on pedestrian pose[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1743-1754 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0557.
    [9]YANG K L,HAN D. Influence of rotor/wing aerodynamic interference on performance of compound helicopters[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1761-1771 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0561.
    [10]DUAN B,YANG S,LI A J. Design of LPV control law for unmanned helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):879-890 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0340.
    [11]FENG W C,ZHANG T,LI W. Experimental study on adverse attitude emergency evacuation of civil aircraft after crash landing[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1553-1562 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0483.
    [12]ZHANG X C,WAN Z Q,YAN D. Optimal active twist control for rotor vibration reduction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3397-3408 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0105.
    [13]SONG Z R,ZHAO J C,YANG W F. Boundary protection control method of helicopter power system based on flight test analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):100-105 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0431.
    [14]DENG B H,XU J F. Active disturbance rejection control of attitude of compound unmanned helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3100-3107 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0788.
    [15]TAN J F,HAN S,WANG C,et al. Accelerated computational method of helicopter brownout based on DEM[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1352-1361 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0450.
    [16]JIN Z B,LI D C,SUN Y,et al. Man-machine cooperative control of helicopter and flight experimental validation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3022-3030 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0038.
    [17]LIN Miao, MENG Gang, JU Yongjian, XU Weisheng, CAO Yi. Design and optimization of large-stroke decoupled three-translational micro-positioning platform[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1252-1262. doi: 10.13700/j.bh.1001-5965.2021.0007
    [18]WANG Shaoping, CHEN Rentong, ZHANG Chao. Reliability estimation for aircraft hydraulic pump based on bivariate performance degradation analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1613-1623. doi: 10.13700/j.bh.1001-5965.2022.0297
    [19]YANG Shang-hang, XU Guo-ning, JIA Zhong-zhen, LI Yong-xiang, ZHUANG Chun-yu, YANG Yan-chu. Research on wireless charging coil location method of aircraft based on machine learning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023-0006
    [20]YIN Zengyuan, CAI Yuanwen, REN Yuan, WANG Weijie, CHEN Xiaocen, YU Chunmiao. Decoupled active disturbance rejection control method for magnetically suspended rotor based on state feedback[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1210-1221. doi: 10.13700/j.bh.1001-5965.2021.0021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3460) PDF downloads(1359) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return