北京航空航天大学学报 ›› 2016, Vol. 42 ›› Issue (9): 1812-1818.doi: 10.13700/j.bh.1001-5965.2015.0566

• 论文 • 上一篇    下一篇

大型飞机A380-800在既有跑道起降的适应性研究

张献民1,2, 刘小兰1, 董倩1,3   

  1. 1. 中国民航大学 机场学院, 天津 300300;
    2. 南京航空航天大学 民航学院, 南京 210016;
    3. 天津大学 建筑工程学院, 天津 300072
  • 收稿日期:2015-09-02 出版日期:2016-09-20 发布日期:2015-12-08
  • 通讯作者: 张献民,Tel.:022-24092470,E-mail:cauczxm@126.com E-mail:cauczxm@126.com
  • 作者简介:张献民,男,博士,教授,博士生导师。主要研究方向:机场场道工程。Tel.:022-24092470,E-mail:cauczxm@126.com;刘小兰,女,硕士研究生。主要研究方向:机场场道工程。E-mail:d1066323835@163.com
  • 基金资助:
    国家自然科学基金(51178456);中央高校基本科研业务费专项资金(Y15-18)

Take-off and landing adaptability of A380-800 large aircraft on existing pavement

ZHANG Xianmin1,2, LIU Xiaolan1, DONG Qian1,3   

  1. 1. Airport College, Civil Aviation University of China, Tianjin 300300, China;
    2. Civil Aviation College, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    3. Civil Engineering College, Tianjin University, Tianjin 300072, China
  • Received:2015-09-02 Online:2016-09-20 Published:2015-12-08
  • Supported by:
    National Natural Science Foundation of China (51178456); the Fundamental Research Funds for the Central Universities (Y15-18)

摘要: 为了探究已建跑道能否满足大型飞机A380-800起降的要求,建立了弹性层状的刚性道面模型和A380-800的整个主起落架模型,通过数值计算,分析了A380-800对道面土基的响应深度、场道面层层底最大拉应力和面层最大竖向位移的影响,并与B747-400的计算结果进行了对比。结果表明:尽管A380-800的最大起飞重量比B747-400大41.09%,但A380-800主起落架机轮数目多、间距和轮距均较大,有利于增强应力扩散、减弱叠加效应,所以其土基响应深度与B747-400仅相差4.29%;其层底最大拉应力的平面位置因受主起落架机轮布置的影响,与B747-400的层底最大拉应力出现在不同位置,且两种机型的层底最大拉应力值仅相差1.09%;其面层最大竖向位移出现在三轴双轮中心轴所在断面,而B747-400面层最大竖向位移出现在内侧双轴双轮的后轴所在断面,且两种机型的面层最大竖向位移仅相差0.49%。因此,从力学特性角度,以B747-400为设计机型或适应B747-400正常起降的道面结构层能够适应A380-800的正常起降。

关键词: A380-800, 主起落架, 响应深度, 最大拉应力, 最大竖向位移, 起降适应性

Abstract: In order to explore whether the existing rigid pavement can meet the normal take-off and landing requirements of A380-800 aircraft, the elastic layered model of rigid pavement and the whole main landing gear model of A380-800 are established, and numerical calculation is used to analyze the effect between A380-800 and pavement on influencing depth, the maximum tensile stress on panel bottom and the maximum vertical displacement on panel surface. The results are as follows: although the maximum take-off weight of A380-800 is 41.09% heavier than that of B747-400, more main landing gear tire number and larger main landing gear spacing and wheel track are advantageous to stress diffusion enhancement and superposition effect reduction, so the influencing depth of A380-800 is 4.29% more than that of B747-400; the locations of the maximum tensile stresses on panel bottom of A380-800 and B747-400 are different because of the main landing gear arrangement, and the maximum tensile stress on panel bottom of A380-800 is 1.09% less than that of B747-400; the maximum vertical displacement on the surface of A380-800 appears in the center of the three-axis double shaft section, while that of B747-400 appears in the back axle of the medial two-axis double cross section, and the maximum vertical displacement on panel surface of A380-800 is 0.49% less than that of B747-400 within the loading area. Therefore, the pavement structure layer which takes B747-400 as a design model or adapts to B747-400 normal take-off and landing can adapt to the normal take-off and landing of A380-800 from the perspective of mechanical properties.

Key words: A380-800, main landing gear, influencing depth, maximum tensile stress, maximum vertical displacement, take-off and landing adaptability

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发