[1] 诸彤宇,王奇,高梦丹.离群点挖掘技术在交通事件检测中的应用[J].计算机科学与探索,2014,8(1):111-120.ZHU T Y,WANG Q,GAO M D.Research on traffic incident detection with outlier mining technology[J].Journal of Frontiers of Computer Science and Technology,2014,8(1):111-120(in Chinese).
[2] 高小霞,霍纬纲,冯兴杰.基于模糊关联分类器的民机超限事件诊断方法[J].北京航空航天大学学报,2014,40(10):1366-1371.GAO X X,HUO W G,FENG X J.Civil aircraft's exceedance event diagnosis method based on fuzzy associative classifier[J].Journal of Beijing University of Aeronautics and Astronautics,2014,40(10):1366-1371(in Chinese).
[3] 李康强.基于广义能量算子的复杂时变调制信号分析方法及其在机械故障诊断中的应用研究[D].北京:北京科技大学,2018:39-141.LI K Q.Generalized energy operator based complicated time-verying modulation signal analysis method for machinery fault diagnosis[D].Beijing:University of Science and Technology Beijing,2018:39-141(in Chinese).
[4] 冯英,武建文,王承玉,等.基于振动信号识别的断路器故障诊断研究[J].高压电器,2017,53(2):1-7.FENG Y,WU J W,WANG C Y,et al.Research of fault diagnosis of circuit breaker based on vibratin signal recognition[J].High Voltage Apparatus,2017,53(2):1-7(in Chinese).
[5] 李晓峰,杨春山,丁树春.基于信息熵的城市隧道实时交通事件检测聚类[J].计算机技术与发展,2013,23(10):212-215.LI X F,YANG C S,DING S C.Entropy-based city tunnel real-time traffic incident detection clustering[J].Computer Technology and Development,2013,23(10):212-215(in Chinese).
[6] 张先飞,郭志刚,刘嵩,等.基于触发词指导的自相似度聚类事件检测[J].计算机科学,2010,37(3):212-220.ZHANG X F,GUO Z G,LIU S,et al.Self-similarity clustering event detection based on triggers guidance[J].Computer Science,2010,37(3):212-220(in Chinese).
[7] BAY S D,SCHWABACHER M.Mining distance-based outliers in near linear time with randomization and a simple pruning rule[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2003:29-38.
[8] IVERSON D L.Inductive system health monitoring[C]//Proceedings of the International Conference on Artificial Intelligence,ICAI'04.Las Vegas:CSREA Press,2004:605-611.
[9] BUDALAKOTI S,SRIVASTAVA A N,OTEY M E.Anomaly detection and diagnosis algorithms for discrete symbol sequences with applications to airline safety[J].IEEE Transactions on Systems,Man,and Cybernetics,Part C:Applications and Reviews,2009,39(1):101-113.
[10] DAS S,MATTHEWS B L,SRIVASTAVA A N,et al.Multiple kernel learning for heterogeneous anomaly detection:Algorithm and aviation safety case study[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2010:47-56.
[11] SMART E,BROWN D,DENMAN J.Combining multiple classifiers to quantitatively rank the impact of abnormalities in flight data[J].Applied Soft Computing,2012,12(8):2583-2592.
[12] AN J,CHO S.Variational autoencoder based anomaly detection using reconstruction probability[J].Special Lecture on IE,2015,12:1-18.
[13] LIM H,PARK J,LEE K,et al.Rare sound event detection using 1D convolutional recurrent neural networks[C]//Detection and Classification of Acoustic Scenes and Events Workshop 2017,2017:1-5.
[14] 胡绍林,黄刘生.航天故障的成因分析与诊断技术[J].控制工程,2003,10(4):295-298.HU S L,HUANG L S.Analysis and diagnosis of faults in spaceflight engineering[J].Control Engineering of China,2003,10(4):295-298(in Chinese).
[15] 谢敏,楼鑫,罗芊,等.航天器故障诊断技术综述及发展趋势[J].软件,2016,37(7):70-74.XIE M,LOU X,LUO Q,et al.Reviewed and developing trend of spacecraft fault diagnosis technology[J].Computer Engineering & Software,2016,37(7):70-74(in Chinese).
[16] 丁彩红,黄文虎,姜兴渭,等.载人航天故障诊断技术的发展及其关键技术分析[J].强度与环境,1999(2):20-24.DING C H,HUANG W H,JIANG X W,et al.The development of spaceflight fault diagnostic techniques and the analysis towards its key skills[J].Structure & Environment Engineering,1999(2):20-24(in Chinese).
[17] 苏振华,陆文高,齐晶,等.基于BP神经网络的卫星故障诊断方法[J].计算机测量与控制,2015,24(5):63-65.SU Z H,LU W G,QI J,et al.A method of satellite fault diagnosis based on BP neural network[J].Computer Measurement & Control,2015,24(5):63-65(in Chinese).
[18] 燕飞,秦世引.基于RBF神经网络和M距离的卫星故障诊断[J].航天控制,2006,24(6):61-66.YAN F,QIN S Y.Fault diagnosis for satellites based on RBF neural network and Mahalanobis distance[J].Aerospace Control,2006,24(6):61-66(in Chinese).
[19] 曾何俊.基于机器学习的卫星故障动态自适应建模关键技术研究[D].成都:电子科技大学,2018:21-76.ZENG H J.Research on modeling key technology of machine learning methods for dynamical adaptation of satellite fault[D].Chengdu:University of Electronic Science and Technology of China,2018:21-76(in Chinese).
[20] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//International Conference on Neural Information Processing Systems,2014:2672-2680.
[21] SCHLEGL T,SEEBOCK P,WALDSTEIN S M,et al.Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C]//Information Processing in Medical Imaging.Berlin:Springer,2017:146-157.
[22] MICHELSANTI D,TAN Z H.Conditional generative adversarial networks for speech enhancement and noise-robust speaker verification[C]//Conference of the International Speech Communication Association 2017,2017,8:2008-2012.
[23] 洪洋,葛振华,王纪凯,等.深度卷积对抗生成网络综述[C]//第18届中国系统仿真技术及其应用学术年会,2017,5:279-283.HONG Y,GE Z H,WANG J K,et al.An overview of deep convolution confrontation generation network[C]//18th Chinese Conference on System Simulation Technology & Application,2017,5:279-283(in Chinese).
[24] DUMOULIN V,BELGHAZI I,POOLE B,et al.Adversarially learned inference[C]//29th Conference on Neural Information Processing Systems(NIPS 2016),2016,6:1-16.
[25] ZENATI H,FOO C S,LECOUAT B,et al.Efficient gan-based anomaly detection[C]//International Conference on Learning Representations,2018:1-7.
[26] YAMASHITA A,HARA T,KANEKO T.Inspection of visible and invisible features of objects with iImage and sound signal processing[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway,NJ:IEEE Press,2006:3837-3842.
[27] DONAHUE J, KRÄHENBVHL P,DARRELL T.Adversarial feature learning[C]//International Conference on Learning Representations,2017,4:1-18. |