留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深度学习机制与小波融合的超分辨率重建算法

杨思晨 王华锋 王月海 李锦涛 王赟豪

杨思晨, 王华锋, 王月海, 等 . 深度学习机制与小波融合的超分辨率重建算法[J]. 北京航空航天大学学报, 2020, 46(1): 189-197. doi: 10.13700/j.bh.1001-5965.2019.0146
引用本文: 杨思晨, 王华锋, 王月海, 等 . 深度学习机制与小波融合的超分辨率重建算法[J]. 北京航空航天大学学报, 2020, 46(1): 189-197. doi: 10.13700/j.bh.1001-5965.2019.0146
YANG Sichen, WANG Huafeng, WANG Yuehai, et al. Super-resolution reconstruction algorithm based on deep learning mechanism and wavelet fusion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 189-197. doi: 10.13700/j.bh.1001-5965.2019.0146(in Chinese)
Citation: YANG Sichen, WANG Huafeng, WANG Yuehai, et al. Super-resolution reconstruction algorithm based on deep learning mechanism and wavelet fusion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 189-197. doi: 10.13700/j.bh.1001-5965.2019.0146(in Chinese)

深度学习机制与小波融合的超分辨率重建算法

doi: 10.13700/j.bh.1001-5965.2019.0146
详细信息
    作者简介:

    杨思晨  女, 硕士研究生。主要研究方向:图像处理

    王华锋  男, 博士, 副教授, 硕士生导师。主要研究方向:计算机视觉

    通讯作者:

    王华锋. E-mail: wanghuafeng@buaa.edu.cn

  • 中图分类号: TP183;TP751

Super-resolution reconstruction algorithm based on deep learning mechanism and wavelet fusion

More Information
  • 摘要:

    深度学习技术在超分辨率重建领域中发展迅速。为了进一步提升重建图像的质量和视觉效果,针对基于生成对抗网络(GAN)的超分辨率重建算法重建图像的纹理放大后不自然的问题,提出了一种结合小波变换和生成对抗网络的超分辨率重建算法。所提算法在生成对抗网络中将小波分解的每个分量在各自独立的子网中进行训练,实现网络对小波系数的预测,有效地重建出具有丰富的全局信息和局部纹理细节信息的高分辨率图像。实验结果表明,对比基于生成对抗网络的算法,所提算法重建图像的客观评价指标峰值信噪比(PSNR)和结构相似性分别能提高至少0.99 dB和0.031。

     

  • 图 1  生成对抗网络模型

    Figure 1.  Generative adversarial network model

    图 2  残差网络模型

    Figure 2.  Residual network model

    图 3  Set5数据集中图像“bird”测试结果

    Figure 3.  Test results of "bird" image in Set5 dataset

    图 4  Set14数据集中图像“barbara”测试结果

    Figure 4.  Test results of "barbara" image in Set14 dataset

    图 5  Set14数据集中图像“monarch”测试结果

    Figure 5.  Test results of "monarch" image in Set14 dataset

    图 6  重建图像的LBP特征分布

    Figure 6.  LBP feature distribution of reconstructed image

    表  1  PSNR和SSIM的测试结果

    Table  1.   Test results of PSNR and SSIM

    数据集 PSNR/dB, SSIM
    SRGAN 本文算法
    Set5 29.50,0.841 30.63,0.897
    Set14 25.95,0.740 26.94,0.771
    BSD100 25.16,0.669 26.91,0.728
    下载: 导出CSV

    表  2  FSIM和UIQ的测试结果

    Table  2.   Test results of FSIM and UIQ

    数据集 FSIM,UIQ
    SRGAN 本文算法
    Set5 0.907,0.925 0.929,0.935
    Set14 0.891,0.973 0.900,0.978
    BSD100 0.828,0.981 0.832,0.984
    下载: 导出CSV

    表  3  重建图像LBP特征图与原始图像LBP特征图之间方差

    Table  3.   Variance between LBP feature map of reconstructed image and LBP feature map of original image

    图像 方差
    SRGAN 本文算法
    bird 0.124 0.061
    barbara 0.261 0.216
    monarch 0.187 0.121
    下载: 导出CSV
  • [1] 曹杨.基于学习的超分辨率复原技术研究[D].北京: 北京工业大学, 2009: 3.

    CAO Y.Research on learning-based super-resolution restoration technology[D].Beijing: Beijing University of Technology, 2009: 3(in Chinese).
    [2] TRINH D H, LUONG M, DIBOS F, et al.Novel example-based method for super-resolution and denoising of medical images[J].IEEE Transactions on Image Processing, 2014, 23(4):1882-1895. doi: 10.1109/TIP.2014.2308422
    [3] LEI Z, YANG J, XUE B, et al.Super-resolution reconstruction of Chang'e-1 satellite CCD stereo camera images[J].Infrared and Laser Engineering, 2012, 41(2):404-408.
    [4] SHEN H, NG M K, LI P, et al.Super-resolution reconstruction algorithm to MODIS remote sensing images[J].Computer Journal, 2009, 52(1):90-100.
    [5] 石晓勃, 高树辉.基于警用图像处理系统对超分辨率图像重建分析[J].中国人民公安大学学报, 2016, 22(4):14-17.

    SHI X B, GAO B.Analysis of super-resolution image reconstruction based on police image processing system[J].Journal of Chinese People's Public Security University, 2016, 22(4):14-17(in Chinese).
    [6] 杨宇翔.图像超分辨率算法研究[D].北京: 中国科学技术大学, 2013: 14-28.

    YANG Y X.Image super resolution algorithm research[D].Beijing: University of Science and Technology of China, 2013: 14-28(in Chinese).
    [7] PARKER J A, KENYON R V, TROXEL D E.Comparison of interpolating methods for image resampling[J].IEEE Transactions on Medical Imaging, 1983, 2(1):31-39. doi: 10.1109/TMI.1983.4307610
    [8] HOU H S, ANDREWS H.Cubic splines for image interpolation and digital filtering[J].IEEE Transactions on Acoustics Speech & Signal Processing, 1978, 26(6):508-517. doi: 10.1109-TASSP.1978.1163154/
    [9] LI X, ORCHARD M T.New edge-directed interpolation[J].IEEE Transactions on Image Processing, 2001, 10(10):1521-1527. doi: 10.1109/83.951537
    [10] OZKAN M K, TEKALP A M, SEZAN M I.POCS-based restoration of space-varying blurred images[J].IEEE Transactions on Image Processing, 1994, 3(4):450-454. doi: 10.1109/83.298398
    [11] IRANI M, PELEG S.Improving resolution by image registration[J].CVGIP Graphical Models & Image Processing, 1991, 53(3):231-239. doi: 10.1017-S1041610209990342/
    [12] SCHULTZ R R, STEVENSON R L.A Bayesian approach to image expansion for improved definition[J].IEEE Transactions on Image Processing, 1994, 3(3):233-242.
    [13] YANG J, WANG Z, LIN Z, et al.Coupled dictionary training for image super-resolution[J].IEEE Transactions on Image Processing, 2012, 21(8):3467-3478. doi: 10.1109/TIP.2012.2192127
    [14] DONG C, LO C C, HE K, et al.Learning a deep convolutional network for image super-resolution[C]//European Conference on Computer Vision.Berlin: Springer, 2014: 184-199. doi: 10.1007/978-3-319-10593-2_13
    [15] KIM J, LEE J K, LEE K M.Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2016: 1637-1645.
    [16] SHI W, CABALLERO J, HUSZAR F, et al.Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2016: 1874-1883.
    [17] TONG T, LI G, LIU X, et al.Image super-resolution using dense skip connections[C]//Proceedings of the IEEE International Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2017: 4809-4817.
    [18] LEDIG C, WANG Z, SHI W, et al.Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2017: 4681-4690.
    [19] LAI W S, HUANG J B, AHUJA N, et al.Deep Laplacian pyramid networks for fast and accurate super-resolution[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 1:5835-5843.
    [20] GUO L, HE Z M.A projection on convex sets super-resolution algorithm using wavelet transform[C]//2008 9th International Conference on Signal Processing.Piscataway, NJ: IEEE Press, 2008: 1039-1041.
    [21] AKBARZADEH S, HASSAN G, FAEZE V.An efficient single image super resolution algorithm based on wavelet transforms[C]//2015 9th Iranian Conference on Machine Vision and Image Processing (MVIP).Piscataway, NJ: IEEE Press, 2015: 111-114.
    [22] KUMAR N, VERMA R, SETHI A.Convolutional neural networks for wavelet domain super resolution[J].Pattern Recognition Letters, 2017, 90:65-71. doi: 10.1016/j.patrec.2017.03.014
    [23] HUANG H, HE R, SUN Z, et al.Wavelet-SRNet: A wavelet-based CNN for multi-scale face super resolution[C]//Proceedings of the IEEE International Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2017: 1689-1697.
    [24] HE K, ZHANG X, REN S, et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2016: 770-778.
    [25] LIM B, SON S, KIM H, et al.Enhanced deep residual networks for single image super-resolution[C]//2011 IEEE Computer Vision and Pattern Recognition Workshops.Piscataway, NJ: IEEE Press, 2017: 1132-1140.
    [26] TIMOFTE R, DE SMET V, VAN GOOL L.Anchored neighborhood regression for fast example-based super-resolution[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway, NJ: IEEE Press, 2013: 1920-1927.
    [27] RUSSAKOVSKY O, DENG J, SU H, et al.ImageNet large scale visual recognition challenge[J].International Journal of Computer Vision, 2014, 115(3):211-252.
    [28] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al.Neighbor embedding based single-image super-resolution using semi-nonnegative matrix factorization[C]//2012 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP).Piscataway, NJ: IEEE Press, 2012: 1289-1292.
    [29] ZEYDE R, ELAD M, PROTTER M.On single image scale-up using sparse-representations[C]//International Conference on Curves and Surfaces.Berlin: Springer, 2010: 711-730.
    [30] MARTIN D, FOWLKES C, TAL D, et al.A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//IEEE Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2001: 416-423.
    [31] WANG Z, BOVIK A C, SHEIKH H R, et al.Image quality assessment:From error visibility to structural similarity[J].IEEE Transactions on Image Processing, 2004, 13(4):600-612. doi: 10.1109/TIP.2003.819861
    [32] ZHANG L, ZHANG L, MOU X, et al.FSIM:A feature similarity index for image quality assessment[J].IEEE Transactions on Image Processing, 2011, 20(8):2378-2386. doi: 10.1109/TIP.2011.2109730
    [33] WANG Z, BOVIK A C.A universal image quality index[J].IEEE Signal Processing Letters, 2002, 9(3):81-84.
    [34] OJALA T, PIETILAINEN M, HARWOOD D.Performance evaluation of texture measures with classification based on Kullback discrimination of distributions[C]//Proceedings of 12th International Conference on Pattern Recognition.Piscataway, NJ: IEEE Press, 1994, 1: 582-585.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  1413
  • HTML全文浏览量:  226
  • PDF下载量:  325
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-03
  • 录用日期:  2019-07-19
  • 网络出版日期:  2020-01-20

目录

    /

    返回文章
    返回
    常见问答