[1] 曹杨.基于学习的超分辨率复原技术研究[D].北京:北京工业大学, 2009:3.CAO Y.Research on learning-based super-resolution restoration technology[D].Beijing:Beijing University of Technology,2009:3(in Chinese). [2] TRINH D H,LUONG M,DIBOS F,et al.Novel example-based method for super-resolution and denoising of medical images[J].IEEE Transactions on Image Processing,2014,23(4):1882-1895. [3] LEI Z,YANG J,XUE B,et al.Super-resolution reconstruction of Chang'e-1 satellite CCD stereo camera images[J].Infrared and Laser Engineering,2012,41(2):404-408. [4] SHEN H,NG M K,LI P,et al.Super-resolution reconstruction algorithm to MODIS remote sensing images[J].Computer Journal,2009,52(1):90-100. [5] 石晓勃,高树辉.基于警用图像处理系统对超分辨率图像重建分析[J].中国人民公安大学学报,2016,22(4):14-17.SHI X B, GAO B.Analysis of super-resolution image reconstruction based on police image processing system[J].Journal of Chinese People's Public Security University,2016,22(4):14-17(in Chinese). [6] 杨宇翔.图像超分辨率算法研究[D].北京:中国科学技术大学,2013:14-28.YANG Y X.Image super resolution algorithm research[D].Beijing:University of Science and Technology of China,2013:14-28(in Chinese). [7] PARKER J A,KENYON R V,TROXEL D E.Comparison of interpolating methods for image resampling[J].IEEE Transactions on Medical Imaging,1983,2(1):31-39. [8] HOU H S, ANDREWS H.Cubic splines for image interpolation and digital filtering[J].IEEE Transactions on Acoustics Speech & Signal Processing,1978,26(6):508-517. [9] LI X,ORCHARD M T.New edge-directed interpolation[J].IEEE Transactions on Image Processing,2001,10(10):1521-1527. [10] OZKAN M K,TEKALP A M,SEZAN M I.POCS-based restoration of space-varying blurred images[J].IEEE Transactions on Image Processing,1994,3(4):450-454. [11] IRANI M,PELEG S.Improving resolution by image registration[J].CVGIP Graphical Models & Image Processing,1991,53(3):231-239. [12] SCHULTZ R R,STEVENSON R L.A Bayesian approach to image expansion for improved definition[J].IEEE Transactions on Image Processing,1994,3(3):233-242. [13] YANG J,WANG Z,LIN Z,et al.Coupled dictionary training for image super-resolution[J].IEEE Transactions on Image Processing,2012,21(8):3467-3478. [14] DONG C,LO C C,HE K,et al.Learning a deep convolutional network for image super-resolution[C]//European Conference on Computer Vision.Berlin:Springer,2014:184-199. [15] KIM J,LEE J K,LEE K M.Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2016:1637-1645. [16] SHI W,CABALLERO J,HUSZAR F,et al.Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2016:1874-1883. [17] TONG T,LI G,LIU X,et al.Image super-resolution using dense skip connections[C]//Proceedings of the IEEE International Conference on Computer Vision.Piscataway,NJ:IEEE Press,2017:4809-4817. [18] LEDIG C,WANG Z,SHI W,et al.Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2017:4681-4690. [19] LAI W S,HUANG J B,AHUJA N,et al.Deep Laplacian pyramid networks for fast and accurate super-resolution[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,1:5835-5843. [20] GUO L, HE Z M.A projection on convex sets super-resolution algorithm using wavelet transform[C]//2008 9th International Conference on Signal Processing.Piscataway,NJ:IEEE Press,2008:1039-1041. [21] AKBARZADEH S,HASSAN G,FAEZE V.An efficient single image super resolution algorithm based on wavelet transforms[C]//2015 9th Iranian Conference on Machine Vision and Image Processing (MVIP).Piscataway,NJ:IEEE Press,2015:111-114. [22] KUMAR N,VERMA R,SETHI A.Convolutional neural networks for wavelet domain super resolution[J].Pattern Recognition Letters,2017,90:65-71. [23] HUANG H,HE R,SUN Z,et al.Wavelet-SRNet:A wavelet-based CNN for multi-scale face super resolution[C]//Proceedings of the IEEE International Conference on Computer Vision.Piscataway,NJ:IEEE Press,2017:1689-1697. [24] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press, 2016:770-778. [25] LIM B,SON S,KIM H,et al.Enhanced deep residual networks for single image super-resolution[C]//2011 IEEE Computer Vision and Pattern Recognition Workshops.Piscataway,NJ:IEEE Press,2017:1132-1140. [26] TIMOFTE R,DE SMET V,VAN GOOL L.Anchored neighborhood regression for fast example-based super-resolution[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway,NJ:IEEE Press,2013:1920-1927. [27] RUSSAKOVSKY O,DENG J,SU H,et al.ImageNet large scale visual recognition challenge[J].International Journal of Computer Vision, 2014,115(3):211-252. [28] BEVILACQUA M,ROUMY A,GUILLEMOT C,et al.Neighbor embedding based single-image super-resolution using semi-nonnegative matrix factorization[C]//2012 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).Piscataway,NJ:IEEE Press,2012:1289-1292. [29] ZEYDE R,ELAD M,PROTTER M.On single image scale-up using sparse-representations[C]//International Conference on Curves and Surfaces.Berlin:Springer,2010:711-730. [30] MARTIN D,FOWLKES C,TAL D,et al.A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//IEEE Conference on Computer Vision.Piscataway,NJ:IEEE Press,2001:416-423. [31] WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:From error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612. [32] ZHANG L,ZHANG L,MOU X,et al.FSIM:A feature similarity index for image quality assessment[J].IEEE Transactions on Image Processing,2011,20(8):2378-2386. [33] WANG Z,BOVIK A C.A universal image quality index[J].IEEE Signal Processing Letters,2002,9(3):81-84. [34] OJALA T,PIETILAINEN M,HARWOOD D.Performance evaluation of texture measures with classification based on Kullback discrimination of distributions[C]//Proceedings of 12th International Conference on Pattern Recognition.Piscataway,NJ:IEEE Press,1994,1:582-585. |