留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tanabe模型和Smith热调节模型结合预测皮温效果分析

王涛 张万欣 李猛 卜雪琴 张宸 王海亮

王涛, 张万欣, 李猛, 等 . Tanabe模型和Smith热调节模型结合预测皮温效果分析[J]. 北京航空航天大学学报, 2022, 48(12): 2482-2493. doi: 10.13700/j.bh.1001-5965.2021.0143
引用本文: 王涛, 张万欣, 李猛, 等 . Tanabe模型和Smith热调节模型结合预测皮温效果分析[J]. 北京航空航天大学学报, 2022, 48(12): 2482-2493. doi: 10.13700/j.bh.1001-5965.2021.0143
WANG Tao, ZHANG Wanxin, LI Meng, et al. Performance analysis of skin temperature prediction model combining Smith's thermoregulation model with Tanabe model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2482-2493. doi: 10.13700/j.bh.1001-5965.2021.0143(in Chinese)
Citation: WANG Tao, ZHANG Wanxin, LI Meng, et al. Performance analysis of skin temperature prediction model combining Smith's thermoregulation model with Tanabe model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2482-2493. doi: 10.13700/j.bh.1001-5965.2021.0143(in Chinese)

Tanabe模型和Smith热调节模型结合预测皮温效果分析

doi: 10.13700/j.bh.1001-5965.2021.0143
基金项目: 

人因工程国防科技重点实验室预研基金 6142222180502

详细信息
    通讯作者:

    张万欣, E-mail: zhangwanxin-2009@163.com

  • 中图分类号: Q65

Performance analysis of skin temperature prediction model combining Smith's thermoregulation model with Tanabe model

Funds: 

Foundation of National Key Laboratory of Human Factors Engineering 6142222180502

More Information
  • 摘要:

    人体热调节模型用于描述人体内外热传递现象,预测热生理参数值。为利用人-服热模型评估室温环境控制,抓住人-服-环境传热的主要因素提出了人体热调节与服装热阻的耦合模型。所提模型由受控系统和热调节控制系统构成。受控系统采用Tanabe模型,把人体分为16个节段,每个节段由内到外分成核心、肌肉、脂肪和皮肤4层,外加与各组织层传热的中心血池,共65个节点,每个节点上利用Pennes生物热方程计算传热量。热调节控制系统采用Smith热调节模型中利用生理数据获取的经验控制方程描述血管舒缩、出汗率和寒颤3种人体基本热调节控制方式。结果表明:所提模型对皮肤温度的预测值与试验结果绝对误差最大值小于0.8 ℃,绝对误差平均值约为0.5 ℃,对试验工况下的人体皮肤温度有较好的预测结果。

     

  • 图 1  人体受控系统传热原理

    Figure 1.  Heat transfer schematic diagram of human passive system

    图 2  人体热调节控制系统原理

    Figure 2.  Schematic diagram of human thermoregulatory control system

    图 3  试验现场受试者做功照片

    Figure 3.  Photo of a subject working at test site

    图 4  人体运动做功流程

    Figure 4.  Flow diagram of work by body movement

    图 5  平均皮肤温度曲线

    Figure 5.  Mean skin temperature curves of bodies

    图 6  头部皮肤温度曲线

    Figure 6.  Skin temperature curves of heads

    图 7  背部皮肤温度曲线

    Figure 7.  Skin temperature curves of backs

    图 8  胸部皮肤温度曲线

    Figure 8.  Skin temperature curves of chests

    图 9  上臂皮肤温度曲线

    Figure 9.  Skin temperature curves of uper arms

    图 10  手部皮肤温度曲线

    Figure 10.  Skin temperature curves of hands

    图 11  腿部皮肤温度曲线

    Figure 11.  Skin temperature curves of thighs

    图 12  脚部皮肤温度曲线

    Figure 12.  Skin temperature curves of feet

    表  1  环境参数汇总

    Table  1.   Environmental parameters

    参数 数值
    环境温度/℃ 25±2
    环境湿度/% 30~70
    风速/(m·s-1) <0.5
    衣物整体热阻/(m2·℃·W-1) 0.13
    衣物整体湿阻/(m2·kPa·W-1) 0.008 3
    下载: 导出CSV

    表  2  运动工况设置

    Table  2.   Motion settings

    运动描述 代谢产热/ W 运动频次 运动时间/min 休息时间/min
    静息直立,双臂下垂 <125 7
    肩运动。双臂向前抬至水平,后向体侧展开,再自然下垂 125~235 20次/min 3~5 7
    肘运动。肩关节前伸60°,同时屈肘,前臂交叉于前胸,双手分别贴于左右胸前,后恢复初始状态 125~235 20次/min 3~5 7
    功率计20 W运动。双手摇动功率计把手,做圆周运动 235~360 40周/min 3~5 7
    功率计30 W运动。双手摇动功率计把手,做圆周运动 235~360 40周/min 3~5 7
    功率计40 W运动。双手摇动功率计把手,做圆周运动 360~465 40周/min 3~5 7
    功率计60 W运动。双手摇动功率计把手,做圆周运动 >465 40周/min 3~5 7
    下载: 导出CSV

    表  3  试验设备信息汇总

    Table  3.   Experimental equipment

    设备 用途 物理量 精度
    温度传感器 测量环境温度 温度 ±0.2 ℃
    湿度传感器 测量环境湿度 湿度 4% FS
    黑球温度计 测量环境黑球温度 温度 ±0.3 ℃
    风速计 测量人体周围风速 风速 2% FS
    肺功能仪 测量吸入氧气和呼出二氧化碳体积流量 体积流量 2% FS
    Ibutton温湿度传感器 测量皮肤温、湿度 温度/湿度 ±0.1 ℃
    2% FS
    人体秤 测量体重 质量 ±1 g
    注: FS为满量程。
    下载: 导出CSV

    表  4  受试者信息

    Table  4.   Profile of subjects

    序号 姓名 性别 年龄/岁 身高/cm 体重/kg 职业
    1 宴X 21 166 60.7 学生
    2 张XX 22 174 64.7 学生
    3 岳XX 30 172 58.4 职工
    4 杨XX 32 181 61.7 职工
    下载: 导出CSV
  • [1] SCHELLEN L, LOOMANS M G L C, KINGMA B R M, et al. The use of a thermophysiological model in the built environment to predict thermal sensation: Coupling with the indoor environment and thermal sensation[J]. Building and Environment, 2013, 59: 10-22. doi: 10.1016/j.buildenv.2012.07.010
    [2] KATIĆ K, LI R L, ZEILER W. Thermophysiological models and their applications: A review[J]. Building and Environment, 2016, 106: 286-300. doi: 10.1016/j.buildenv.2016.06.031
    [3] LI Y, LI F Z, LIU Y X, et al. An integrated model for simulating interactive thermal processes in human-clothing system[J]. Journal of Thermal Biology, 2004, 29(7-8): 567-575. doi: 10.1016/j.jtherbio.2004.08.071
    [4] BURTON A C. The application of the theory of heat flow to the study of energy metabolism: Five figures[J]. The Journal of Nutrition, 1934, 7(5): 497-533. doi: 10.1093/jn/7.5.497
    [5] GAGGE A P, STOLWIJK A J, NISHI Y. An effective temperature scale based on a simple model of human physiological regulatory response[J]. ASHRAE Transaction, 1971, 77(1): 247-262.
    [6] WHITTOW G C. Comparative physiology of thermoregulation[M]. New York: Academic Press, 1971: 327-380.
    [7] SMITH C E. A transient, three-dimensional model of the human thermal system[D]. Kansas: Kansas State University, 1991: 718-724.
    [8] FIALA D, LOMAS K J, STOHRER M. Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions[J]. International Journal of Biometeorology, 2001, 45(3): 143-159. doi: 10.1007/s004840100099
    [9] HUIZENGA C, HUI Z, ARENS E. A model of human physiology and comfort for assessing complex thermal environments[J]. Building and Environment, 2001, 36(6): 691-699. doi: 10.1016/S0360-1323(00)00061-5
    [10] ZHANG H, HUIZENGA C, ARENS E, et al. Considering individual physiological differences in a human thermal model[J]. Journal of Thermal Biology, 2001, 26(4-5): 401-408. doi: 10.1016/S0306-4565(01)00051-1
    [11] TANABE S I, KOBAYASHI K, NAKANO J, et al. Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD)[J]. Energy and Buildings, 2002, 34(6): 637-646. doi: 10.1016/S0378-7788(02)00014-2
    [12] LAI D Y, CHEN Q Y. A two-dimensional model for calculating heat transfer in the human body in a transient and non-uniform thermal environment[J]. Energy and Buildings, 2016, 118: 114-122. doi: 10.1016/j.enbuild.2016.02.051
    [13] DAVOODI F, HASSANZADEH H, ZOLFAGHARI S A, et al. A new individualized thermoregulatory bio-heat model for evaluating the effects of personal characteristics on human body thermal response[J]. Building and Environment, 2018, 136: 62-76. doi: 10.1016/j.buildenv.2018.03.026
    [14] KANG Z X, WANG F M, UDAYRA J. An advanced three-dimensional thermoregulation model of the human body: Development and validation[J]. International Communications in Heat and Mass Transfer, 2019, 107: 34-43. doi: 10.1016/j.icheatmasstransfer.2019.05.006
    [15] 范路. 人体热调节模型综述及其发展讨论[J]. 节能, 2020, 39(4): 172-176. doi: 10.3969/j.issn.2095-0802.2020.04.076

    FAN L. Human thermoregulatory models and their development: A review[J]. Energy Conservation, 2020, 39(4): 172-176(in Chinese). doi: 10.3969/j.issn.2095-0802.2020.04.076
    [16] 倪冬香. 基于人体热调节模型的轿车乘员舱热舒适性分析[D]. 上海: 上海交通大学, 2010: 723-730.

    NI D X. Thermal comfort study in automobile passenger compartment based on human thermoregulation model[D]. Shanghai: Shanghai Jiao Tong University, 2010: 723-730(in Chinese).
    [17] TANG Y L, HE Y, SHAO H W, et al. Assessment of comfortable clothing thermal resistance using a multi-scale human thermoregulatory model[J]. International Journal of Heat and Mass Transfer, 2016, 98: 568-583. doi: 10.1016/j.ijheatmasstransfer.2016.03.030
    [18] 陈吉清, 郑习娇, 兰凤崇, 等. 基于人体热调节模型的乘员舱热舒适性分析[J]. 汽车工程, 2019, 41(6): 723-730. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201906018.htm

    CHEN J Q, ZHENG X J, LAN F C, et al. An analysis on thermal comfort in passenger compartment based on human thermal regulation model[J]. Automotive Engineering, 2019, 41(6): 723-730(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201906018.htm
    [19] 马景辉, 魏厚福, 杨艺真, 等. 基于人体热调节模型的局部辐射温度对热舒适的影响[J]. 浙江理工大学学报(自然科学版), 2020, 43(1): 130-135. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSG202001019.htm

    MA J H, WEI H F, YANG Y Z, et al. Effect of local radiant temperature on thermal comfort based on human thermoregulation model[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2020, 43(1): 130-135(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSG202001019.htm
    [20] RIDA M, KELLY N. Toward better estimation of HVAC loads: Integrating a detailed human thermal model into building simulation[J]. Energy Procedia, 2017, 122: 1147-1152. doi: 10.1016/j.egypro.2017.07.455
    [21] ZHAO J P, WANG H Q, LI Y G, et al. Heatstroke recovery at home as predicted by human thermoregulation modeling[J]. Building and Environment, 2020, 173: 106752. doi: 10.1016/j.buildenv.2020.106752
    [22] WANG F M, GORDON C. Assessing and modeling the thermal impact of the human-clothing environment[J]. Journal of Thermal Biology, 2017, 70: 1.
    [23] YANG J, WENG W G, FU M. Coupling of a thermal sweating manikin and a thermal model for simulating human thermal response[J]. Procedia Engineering, 2014, 84: 893-897. doi: 10.1016/j.proeng.2014.10.512
    [24] YANG J, NI S J, WENG W G. Modelling heat transfer and physiological responses of unclothed human body in hot environment by coupling CFD simulation with thermal model[J]. International Journal of Thermal Sciences, 2017, 120: 437-445. doi: 10.1016/j.ijthermalsci.2017.06.028
    [25] IVANOV K P. The development of the concepts of homeothermy and thermoregulation[J]. Journal of Thermal Biology, 2006, 31(1-2): 24-29. doi: 10.1016/j.jtherbio.2005.12.005
    [26] QIAN X M, FAN J T. Interactions of the surface heat and moisture transfer from the human body under varying climatic conditions and walking speeds[J]. Applied Ergonomics, 2006, 37(6): 685-693. doi: 10.1016/j.apergo.2006.01.002
    [27] UMENO T. Prediction of skin and clothing temperatures under thermal transient considering moisture accumulation in clothing[J]. ASHRAE Transaction, 2001, 107: 71-81.
    [28] FU G Z. A transient, 3-D mathematical thermal model for the clothed human[D]. Kansas: Kansas State University, 1995: 61-63.
    [29] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 热环境人类工效学代谢率的测定: GB/T 18048—2008[S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. Ergonomics of the thermal environment-Determination of metabolic rate: GB/T 18048—2008[S]. Beijing: Standards Press of China, 2009(in Chinese).
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  338
  • HTML全文浏览量:  107
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 录用日期:  2021-04-23
  • 网络出版日期:  2021-06-21
  • 整期出版日期:  2022-12-20

目录

    /

    返回文章
    返回
    常见问答