Training sequence based carrier frequency synchronization method for OFDM system
-
摘要: 在研究单次频偏累积相偏估计的基础上,详细分析了2次独立的频偏累积相偏估计带来的频偏捕获范围的提高.并在此基础上提出一种基于训练序列的载波同步算法.这种算法利用时域2次独立的不同分辨力的相偏估计,解决了单次估计可能存在的相位模糊问题,从而实现了大频偏载波同步.通过理论分析给出了这种算法的性能,并通过仿真进行了验证.由于完全在时域进行估计,和其他大频偏载波同步算法相比,这种算法计算量小,且实现简单.Abstract: Based on the study of single estimation of phase-offset induced by frequency offset, two independent phase-offset estimations which could expand the capture range of frequency offset was thoroughly analyzed, and a trainingsequence based carrier frequency synchronization method for orthogonal frequency division multiplexing(OFDM) system was proposed. The method take the advantage of two independent phase-offset estimations to remove the potential phase ambiguity existed in a phase-offset estimation, soas to recover the carrier frequency in a wide range. Theoretical analysis and simulation tests were provided to evaluate the performance of the method. Since the frequency offset is estimated in time domain, this method is easier to implement with much less complexity comparing with other wide range carrier frequency recovery methods.
-
[1] Van Nee R, Prasad R. OFDM for wireless multimedia communications [M]. Boston:Artech House, 2000 [2] Moose P. A technique for orthogonal frequency division multiplexing frequency offset correction [J]. IEEE Transactions on Communications,1994,42(10):2908~2914 [3] Van de Beek J J, Sandell M, Borjesson P O. ML estimation of time and frequency offset in OFDM systems [J]. IEEE Transactions on Signal Processing,1997, 45(7):1800~1805 [4] Chang S, Powers E J. Efficient frequency-offset estimation in OFDM-based WLAN systems [J]. Electronics Letters,2003, 39(21):1554~1555 [5] Schmidl T M, Cox D C. Robust frequency and timing synchronization for OFDM [J]. IEEE Transactions on Communalizations, 1997, 45(12):1613~1621 [6] Schmidl T M, Cox D C. Low-overhead, low-complexity synchronization for OFDM . IEEE International Conference on Communications . Dallas:Texas USA, 1996. 1301~1306 [7] Kim Y H, Hahm Y K, Hye J J, et al. An efficient frequency offset estimator for timing and frequency synchronization in OFDM systems . IEEE Pacific Rim Conference on Communications, Computers and Signal Processing . Victoria:Canada,1999. 580~583 [8] Kim Y H, Song I, Yoon S, et al. An efficient frequency offset estimator for OFDM systems and its performance characteristics [J]. IEEE Transactions on Vehicular Technology,2001, 50(5):1307~1312 [9] Li Mingqi, Zhang Wenjun. A novel method of carrier frequency offset estimation for OFDM systems [J]. IEEE Transactions on Consumer Electronics, 2003, 49(4):965~972 [10] Ai B, Ge Jianhua, Wang Yong, et al. Frequency offset estimation for OFDM in wireless communications [J]. IEEE Transactions on Consumer Electronics,2004, 50(1):73~77 [11] Li J, Lie G,Giannakis G B. Carrier frequency offset estimation for OFDM-based WLAN's [J]. IEEE Signal Processing Letters, 2001, 8(3):80~82 [12] Ma Yugang. Modified nonlinear least square approaches to carrier frequency offset estimation in OFDM systems [J]. IEEE Communications Letters,2003, 7(4):177~179 [13] IEEE STD 802.11a. Wireless LAN medium access control (MAC) and physical layer (PHY) specifications:high-speed physical layer in the 5 GHz band . 1999 [14] IEEE STD 802.11a. Wireless MAC and PHY specifications:further higher-speed physical layer extension in the 2.4 GHz Band[S]. 2003 [15] IEEE 802.16.2-2001. IEEE recommended practice for local and metropolitan area networks—coexistence of fixed broadband wireless access systems[S]. 2001
点击查看大图
计量
- 文章访问数: 3685
- HTML全文浏览量: 204
- PDF下载量: 1497
- 被引次数: 0