Path tracking control and simulation of underwater vehicle
-
摘要: 研究了水下机器人的路径跟踪问题.首先考虑重力、浮力、推力、水动力以及附加质量的影响,建立了6自由度水下机器人的动力学模型.在此基础上设计了非线性控制系统,包括一个内控制回路和一个外控制回路.内控制回路根据机器人动力学模型引入非线性补偿,使得经内控制回路作用后的机器人化为一个解耦的线性定常系统,外控制回路采用比例微分(PD)控制,根据机器人实际轨迹与期望轨迹间的偏差进行负反馈控制.最后通过MATLAB对水下机器人追踪水面目标和跟踪空间螺旋线进行仿真,并给出了仿真曲线,从仿真结果可以看出,利用该方法可以使水下机器人具有较强的抗干扰能力,能够较好地实现对时变理论轨迹的跟踪.Abstract: Path tracking of underwater vehicle was discussed. The kinetic equations of 6-degree of freedom underwater vehicles were given first, taking into account the gravity, buoyancy, thrust power and ocean current etc. Then a nonlinear controller, which includes an inner loop and an outer loop, was designed to track the geometric path. In inner loop, nonlinear compensation was imported to simplify the robot system to a linear system, in outer loop, negative feedback was used to correct the wrap between the actual path and ideal path. Simulation results about pursuing surface vehicles and tracking helical line were given to demonstrate the proposed scheme. Simulation results show that the strategy has nice performance of tracking ability.
-
Key words:
- simulation /
- robots /
- underwater vehicle /
- path tracking
-
[1] 刘永宽. 未来十年全球无人无缆自主式潜器的发展趋势[J]. 机器人,1994, 16(3):185~192 Liu Yongkuan. Developing trend of the worldwide AUV for the next ten years[J]. Robot, 1994, 16(3):185~192(in Chinese) [2] 任福君, 张 岚, 王殿君,等. 水下机器人的发展现状[J]. 佳木斯大学学报,2002, 18(4):317~320 Ren Fujun, Zhang Lan, Wang Dianjun, et al. Development state of underwater vehicles[J]. Journal of Jiamusi University,2002, 18(4):317~320(in Chinese) [3] Healey A J, Lienard D. Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles [J].IEEE J Oceanic Engineering, 1993, 18(3):327~339 [4] 戴学丰, 边信黔. 6自由度水下机器人运动轨迹滑模控制[J]. 计算技术与自动化, 2000,19(2):68~71 Dai Xuefeng, Bian Xinqian. Sliding mode trajectory control for 6-DOF underwater vehicle. Computing Technology and Automation, 2000, 19(2):68~71(in Chinese) [5] 陈 伟. 水下无人潜器回收导引和控制技术的研究. 哈尔滨:哈尔滨工程大学自动化学院, 2001 Chen Wei. Study on recovery guidance and control technology of underwater unmanned vehicle. Harbin:Harbin Engineering University Automation Academy, 2001(in Chinese) [6] 刘学敏,刘建成,徐玉如. 基于最小扰动BP算法的水下机器人运动控制[J]. 哈尔滨工程大学学报,2001,22(2):20~23 Liu Xuemin,Liu Jiancheng,Xu Yuru. Motion control of underwater vehicle based on least disturbance BP algorithm[J]. Journal of Harbin Engineering University, 2001,22(2):20~23(in Chinese) [7] 蒋新松, 封锡盛, 王棣棠. 水下机器人[M]. 沈阳:辽宁科学技术出版社, 2000 Jiang Xingsong, Feng Xisheng, Wang Ditang. Unmanned underwater vehicles[M]. Shenyang:LiaoNing Science and Technology Publishing House, 2000(in Chinese) [8] Yoerger D R, Slotine J E. Robust trajectory control of underwater vehicle [J]. IEEE J Oceanic Engineering, 1985, 10(4):462~470 [9] 吴旭光, 徐德民. 水下自主航行器动力学模型[M]. 西安:西北工业大学出版社,1998 Wu Xuguang, Xu Deming. Kinetic model of autonomous underwater vehicle [M]. Xi'an:Northwestern Polytechnical University Press, 1998(in Chinese) [10] Luh J Y S, Walker M, Paul R P. Resolved acceleration control of mechanical manipulators[J]. IEEE Trans on Automatic Control, 1980,25:486~474 [11] Yuh J. Design and control of autonomous underwater robots:a survey. Autonomous Robots, 2000, 8:7~24 [12] 徐宣志主编. 鱼雷力学[M]. 北京:国防工业出版社,1992 Xu Xuanzhi. Torpedo mechanics[M]. Beijing:National Defence Industry Press, 1992(in Chinese)
点击查看大图
计量
- 文章访问数: 2833
- HTML全文浏览量: 160
- PDF下载量: 1025
- 被引次数: 0