## 留言板

 引用本文: 李国辉, 邓学蓥, 马宇等 . 定常对称背涡流态下细长体绕流结构的演变[J]. 北京航空航天大学学报, 2005, 31(02): 167-171.
Li Guohui, Deng Xueying, Ma Yuet al. Structure evolution of the steady and symmetric vortex pattern around a slender[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(02): 167-171. (in Chinese)
 Citation: Li Guohui, Deng Xueying, Ma Yuet al. Structure evolution of the steady and symmetric vortex pattern around a slender[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(02): 167-171. (in Chinese)

• 中图分类号: V 211

## Structure evolution of the steady and symmetric vortex pattern around a slender

• 摘要: 应用数值计算的方法模拟了细长体截面绕流结构的演变过程.指出随着细长体背涡的发展,导致截面流场的拓扑结构发生变化,会出现一种临界流动状态.并用微分方程的定性理论分析了此时流场中出现的一种高阶奇点.这种高阶奇点的指数为-3/2,它是结构不稳定的,稍有扰动就会产生分叉,使流场的拓扑结构发生变化.得出了定常对称背涡流态下细长体的空间绕流结构图.

•  [1] Lowson M V, Ponton A J. Symmetry breaking in vortex flows on conical bodies [J]. AIAA Journal, 1995,30(6):1576~1583 [2] 陆启韶.常微分方程的定性方法和分叉[M].北京:北京航空航天大学出版社, 1989．106~110 Lu Qishao. The qualitative method of differential equation and bifurcation [M].Beijing:Beijing University of Aeronautics and Astronautics Press, 1989．106~110(in Chinese) [3] 张芷芬,丁同仁,黄文灶,等.微分方程定性理论[M].北京:科学出版社,1985．156~163 Zhang Zhifen, Ding Tongren, Huang Wenzhao, et al. The qualitative theory of differential equation [M]. Beijing :Science Press, 1985.156~163(in Chinese)

##### 计量
• 文章访问数:  2394
• HTML全文浏览量:  190
• PDF下载量:  865
• 被引次数: 0
##### 出版历程
• 收稿日期:  2004-06-20
• 网络出版日期:  2005-02-28

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈

常见问答