留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性弹性材料的三阶本构方程

王寿梅 徐明 李宁

王寿梅, 徐明, 李宁等 . 非线性弹性材料的三阶本构方程[J]. 北京航空航天大学学报, 2002, 28(4): 402-404.
引用本文: 王寿梅, 徐明, 李宁等 . 非线性弹性材料的三阶本构方程[J]. 北京航空航天大学学报, 2002, 28(4): 402-404.
WANG Shou-mei, XU Ming, LI Ninget al. Third-Order Constitutive Law for Nonlinear Elastic Materials[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(4): 402-404. (in Chinese)
Citation: WANG Shou-mei, XU Ming, LI Ninget al. Third-Order Constitutive Law for Nonlinear Elastic Materials[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(4): 402-404. (in Chinese)

非线性弹性材料的三阶本构方程

详细信息
    作者简介:

    王寿梅(1936-),男,山东青岛人,教授,100083,北京.

  • 中图分类号: O 343.5

Third-Order Constitutive Law for Nonlinear Elastic Materials

  • 摘要: 推导了可压和不可压非线性弹性体的本构方程.应力张量,作为以单个应变张量为变量的张量值函数,用含有高阶弹性张量的张量多项式来表示.利用各种对称性来简化这些表达式,最后得到了各向同性情况下的本构方程和应变能函数.得到的表达式是完备和不可约的,满足张量函数的表示定理.

     

  • [1] Mooney M. A theory of large elastic deformation[J]. App Phys, 1940, 11:582~592. [2]Rivlin R S. A uniqueness theorem in the theory of highly-elastic materials[J]. Pro Cambridge Phil Soc, 1948, 44:595~597. [3]Treloar L R G. The physics of rubber elasticity[M]. Third Edition. Oxford:Clarendon Press,1975. [4]Yeoh O H. Characterization of elastic properties of carbon-black-filled rubber vulcanizates[J]. Rubber Chemistry and Technology, 1990, 63:792~805. [5]Arruda E M, Boyce M C. A Three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[J]. Mech Phys Solids, 1993,41(2):389~412. [6]Fung Y C, Liu S Q. Determination of the mechanical properties of the different layers of blood vessels in vivo[J]. Proc Natl Acad Sci, 1992, 95(3):2169~2173. [7]Zhao Guoxing, Wang Shoumei. New constitutive relationship of incompressible hyperelasticity[J]. Journal of Aeronautics, 1998, 11(1):15~22. [8]Wang Shoumei, Zhu Wangkun. On polynomial constitutive laws for nonlinear elastic materials .In:Gong Yaonan, Liu Peiqing,eds. Proceedings of the Third Asian-Pacific Conference on Aerospace Technology and Science . Kunming:Beijing University of Aeronautics and Astronautics, 2000.313~318. [9]Reiner M. Elasticity beyond the elastic limit[J]. Amer J Math, 1948,70:433~466. [10] Treloar L R G. Stress-strain data for vulcanized rubber under various types of deformation[J]. Trans Faraday Soc, 1944, 40:59. [11]Shaw M C, Yong E. Rubber elasticity and rupture[J]. Transaction of ASME, Engng Material Tech, 1988, 110:258~265.
  • 加载中
计量
  • 文章访问数:  2729
  • HTML全文浏览量:  160
  • PDF下载量:  1304
  • 被引次数: 0
出版历程
  • 收稿日期:  2000-10-30
  • 网络出版日期:  2002-04-30

目录

    /

    返回文章
    返回
    常见问答