A General Theory for Elastic Damage
-
摘要: 依据不可逆热力学理论,未引入任何附加假设,建立了各向异性弹性损伤的一般理论.从理论上论证了由应变等效假设导出的经典损伤本构方程的近似性.首次阐明了材料损伤度的多种定义(损伤的单标量、双标量、二阶张量与四阶张量描述)之间的区别与联系.使连续损伤力学的理论体系更臻严密和完整.Abstract: On the strict basis of irreversible thermodynamics, a general theory for elastic damage is developed. The approximations and limitations of the classical stress-strain constitutive equation based on the strain equivalence hypothesis are argued theoretically. The relations and differences of the existing various definitions of damage (single scalar, double scalar, second rank and fourth rank tensor damage variables) are expounded for the first time. The theoretical rigor of continuum damage mechanics is improved.
-
[1] Rabier P J. Some remarks on damage mechanics[J]. Int J Engng Sci, 1989, 27:29~54. [2] Lemaitre J. A course on damage mechanics[M]. Berlin:Springer-Verlag, 1992. [3] 张 行,赵 军. 金属构件应用疲劳损伤力学[M]. 北京:国防工业出版社, 1998. [4] Chaboche J L. Anisotropic creep damage in the framework of continuum damage mechanics[J]. J Nuc Engng Des, 1984, 79:309~319. [5] 高蕴昕,郑泉水,余寿文. 弹性各向同性损伤的双标量描述[J]. 力学学报, 1996, 28:542~549. [6] Cauvin A, Testa R B. Elastoplastic materials with isotropic damage[J]. Int J Solids Struc, 1999, 36:727~746. [7] 唐雪松,蒋持平,郑键龙. 弹性损伤材料的应力-应变关系与损伤演化方程[J]. 长沙交通学院学报, 1999, 15:8~14. [8] Lemaitre J, Chaboche J L. Aspect phénoménologique de la rupture par endommagement[J]. J de Méca Appl, 1978,2:317~365. [9] Lemaitre J, Chaboche J L. Mécanique des Matériaux Solids[M]. Paris:Dunod, 1985. [10] Kachanov M. On the effective moduli of solids with cavities and cracks[J]. Int J Frac, 1993, 59:R17~R21. [11] Benvensite Y. On the Mori-Tanaka's method in cracked solids[J]. Mech Res Comm, 1986, 13:193~201.
点击查看大图
计量
- 文章访问数: 3128
- HTML全文浏览量: 159
- PDF下载量: 1575
- 被引次数: 0