Dexterity optimization based on orthogonal test of 3P3R grinding robot
-
摘要: 针对机器人磨削加工复杂曲面工件时,存在加工路径不连续、需要更换夹具而影响加工精度的问题,提出了一种3P3R磨削机器人.使用D-H法建立了机器人的运动学模型,得到了机器人的正解方程.建立了工件坐标系{W}主动、工具坐标系{T}被动模式的新型机器人系统坐标系,指出了机器人基坐标系{O}与{T}的相对位置是影响磨削机器人的灵活空间的重要因素.采用正交试验法,得到了机器人的第二关节方向的相对位置是影响灵活磨削空间最显著的因素,并且优化了磨削机接触轮相对于机器人摆放的位置,使机器人的灵活磨削空间扩大了1倍,提高了磨削机器人的灵活性.Abstract: The precision is impacted when the robotic grinding path is discontinuous and the gripper needs to be replaced during manufacturing. In order to solve this problem, a new type grinding robot, 3P3R, was proposed. Based on D-H notation, space kinematics modeling of the grinding robot was presented, and the kinematical equation was derived. A new robot frame including active work piece frame {W} and passive tool frame {T} was presented. It was pointed out that the relative position between the base frame of the robot {O} and {T} was a key factor which impacted on dexterous workspace of the grinding robot. The orthogonal test method indicated that the relative position in the direction of second joint of the robot was the most significant factor. Furthermore, the position of the contact wheel relative to the robot was optimized and the volume of the dexterous space was doubled. The dexterity of the robot was improved.
-
Key words:
- robots /
- grinding /
- kinematics /
- dexterity /
- optimization /
- orthogonal test
-
[1] 黄云,黄智.砂带磨削的发展及关键技术[J].中国机械工程,2007,18:2263-2267 Huang Yun,Huang Zhi.Development and key technologies of abrasive belt grinding[J].China Mechanical Engineering,2007,18:2263-2267(in Chinese) [2] 王维朗,潘复生,陈延君,等.砂带磨削技术及材料的研究现状和发展前景[J].材料导报,2006,20(2):106-108 Wang Weilang,Pan Fusheng,Chen Yanjun,et al.Present research status and development prospect of abrasive belt grinding technique[J].Materials Review,2006,20(2):106-108(in Chinese) [3] Sun Y.Development of a comprehensive robotic grinding process .Storrs:School of Engineering,University of Connecticut,2004:6-16 [4] Sun Y,Giblin J,Kazerounian K.Accurate robotic belt grinding of workpieces with complex geometries using relative calibration techniques[J].Robotics and Computer-Integrated Manufacturing,2009,25(1):204-210 [5] 邢洪光,王利红,张玉茹.神经外科手术机器人灵活性分析[J].北京航空航天大学学报,2004,30(4):312-315 Xing Hongguang,Wang Lihong,Zhang Yuru.Dexterity analysis of robot for neurosurgery[J].Journal of Beijing University of Aeronautics and Astronautics,2004,30(4):312-315(in Chinese) [6] Yang Daniel C H,Lai Zone-Chang.On the dexterity of robotic manipulators-service angle[J].ASME Journal of Mechanisms,Transmissions,and Automation in Design,1985,107(3):162-270 [7] Song Shin-Min,Lei Chimeng,Wang Jiang.The end-effector angle and manipulator dexterous workspace[J].ASME Journal of Mechanical Design,1990,112(3):278-282 [8] 毕诸明.机器人姿态空间的分析与综合[J].机械科学与技术,1996,15(1):11-16 Bi Zhuming.Analysis and integration of robot posespace[J].Mechanical Science and Technology,1996,15(1):11-16(in Chinese) [9] Vijaykumar R,Waldron K,Tsai M.Geometric optimization of serial chain manipulator structures for working volume and dexterity[J].The International Journal of Robotics Research,1986:5(2):91-103 [10] 姜同川.正交试验设计[M].济南:山东科学技术出版社,1985:20-22 Jiang Tongchuan.Orthogonal tests design [M].Jinan:Shandong Science and Technology Press,1985:20-22(in Chinese)
点击查看大图
计量
- 文章访问数: 3800
- HTML全文浏览量: 31
- PDF下载量: 1120
- 被引次数: 0