Numerical dissipation of Roe’s scheme with preconditioning for low-speed flows
-
摘要: 使用Roe格式计算低马赫数流动,需采用预处理技术.在预处理技术中,需要选择适合的预处理参数,但有时很难找到,因而得不到合理的计算结果.通过数值实验,发现使用预处理方法时,格式的数值粘性对低速流动的模拟有显著的影响.提出了在预处理Roe格式中加入可调参数,用以控制数值粘性对计算结果的影响.带有可调节数值粘性参数的预处理Roe格式的数值粘性更接近低速流动的真实耗散,反映了低速流动的真实物理现象.对方腔流动和圆柱绕流的低雷诺数定常流动所做的数值实验,得到了比较满意的结果,表明这一改进是有效的.对同一低雷诺数不同低马赫数的定常圆柱绕流所做的数值实验,均得到了满意的结果,表明了方法的适用性.Abstract: Preconditioning is necessary for simulating of low-speed flows with Roe-s scheme. With most research on choosing preconditioning parameter, the solution may be wrong. Numerical experiments show the numerical dissipation of the scheme has a notable effect on low-speed flow numerical simulation with preconditioning method. A manner by using an adjustable parameter in preconditioning Roe-s scheme to control the numerical dissipation was proposed. The numerical dissipation of preconditioning Roe-s scheme with an adjustable parameter was more similar to the real dissipation of low-speed flows and reflected the real physical phenomena of low-speed flows. Numerical results show the efficiency of the new scheme and the low Reynold-number steady solutions of viscous flow past a circular cylinder and square cavity flow are satisfied. Also indicate that the applicability of the new scheme and different low Mach number with the same low Reynold-number steady solutions of viscous flow past a circular cylinder are also satisfied.
-
Key words:
- numerical methods /
- steady flow /
- cylinders
-
[1] Turkel E.Preconditioned methods for solving the incompressible and low speed compressible equations[J].Journal of Computational Physics,1987,72(2):277-298 [2] Merkle C L,Sullivan J Y,Buelow P E O,et al.Computation of flow with arbitrary equations of state[J].AIAA Journal,1998,36(4):515-521 [3] Choi D,Merkle C L.Application of time-iterative schemes to incompressible flow[J].AIAA Journal,1985,23(10):1518-1524 [4] Darmofal D L,Schmid P J.The importance of eigenvectors for local preconditioners of the Euler equations[J].Journal of Computational Physics,1996,127(2):346-362 [5] Lee S H.Convergence characteristics of preconditioned Euler equations[J].Journal of Computational Physics,2005,208(1):266-288 [6] Buelow P E O.Convergence enhancement of Euler and Navier-Stokes algorithms .PA:Department of Mechanical Engineering,Pennsylvania State University,1995 [7] Yoon S,Jameson A.Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations .AIAA Paper 87-0600,1987 [8] 朱自强,吴子牛,李津,等.应用计算流体力学[M].北京:北京航空航天大学出版社,2001:66-81 Zhu Ziqiang,Wu Ziniu,Li Jin,et al.Applied computational fluid dynamics[M].Beijing:Beijing University of Aeronautics and Astronautics Press,2001:66-81 (in Chinese) [9] Chen Xuejiang,Qin Guoliang,Xu Zhong.Spectral element method and high order time splitting method for navies stokes equation[J].Chinese Journal of Computational Mechanics,2002,19(3):281-285 [10] Fornberg B.A numerical study of steady viscous flow past a circular cylinder[J].J Fluid Mech,1980,98:819-855
点击查看大图
计量
- 文章访问数: 3937
- HTML全文浏览量: 279
- PDF下载量: 1698
- 被引次数: 0