Class of multiple-revolution impulsive rendezvous with priority of minimum fuel
-
摘要: 通过分析采用多圈飞行Lambert解的双脉冲交会的特征速度与转移轨道半长轴的关系,指出其最优解实际上是2N+1条满足时间约束的转移轨道中燃料较省的,而非最省燃料轨道.提出将双脉冲交会的首次脉冲矢量分解成方向相同的两次脉冲,使得追踪器在特定的滑行轨道飞行N圈以消耗多余的转移时间,利用剩余的转移时间沿最省燃料轨道与目标交会.几何上证明了这种交会的特征速度与最省燃料转移相同,并且给出了解的存在性条件.通过仿真验证了这种交会比采用多圈飞行Lambert解的双脉冲交会更省燃料,解的存在性对转移时间的长度要求更低.Abstract: For two-impulsive rendezvous using multiple-revolution Lambert solutions, the relationship between characteristic velocity (Δv) and semi-major axis of transfer trajectory was considered. It was proposed that the optimal solution actually is the less fuel trajectory among 2N+1 trajectories satisfying time constraint, but not the minimum fuel trajectory(MFT). As the first impulse of two-impulsive rendezvous was dissembled into two impulses with the same direction, a chaser could consume the redundant transfer time by coasting N revolutions on a specified orbit, and rendezvous a target on MFT in the rest transfer time. It was proved that Δv of this rendezvous coincide with that of minimum fuel transfer in geometry. The existence of solutions was given. Some simulations show that this rendezvous can save fuel and the existence of solutions is more loosely restrictive on the length of transfer time than two-impulsive rendezvous using multiple-revolution Lambert solutions.
-
Key words:
- orbital rendezvous /
- impulse rendezvous /
- fuel optimization
-
[1] Bate R R, Muler D D,White J E.航天动力学基础[M].吴鹤鸣,李肇杰,译.北京:北京航空航天大学出版社,1990:176-185 Bate R R,Muler D D,White J E.Fundamentals of astrodynamics[M].Translated by Wu Heming,Li Zhaojie.Beijing:Beijing University of Aeronautics and Astronautics Press,1990:176-185 (in Chinese) [2] Battin R H. Lambert-s problem revisited [J].AIAA Journal,1977,15(5):707-713. [3] Battin R H, Vaughan R M.An elegant Lambert algorithm[J].J Guidance,1984,7(6):662-670. [4] Vaughan R M. An improvement of Gauss-s method for solving Lambert-s problem. Charles Stark Draper Lab,Inc,Cambridge,Mass,Report T-813,1983. [5] Battin R H. An introduction to the mathematics and methods of astrodynamics[M].New York:AIAA Education Series,1987. [6] Prussing J E, Conway B A.Orbital mechanics[M].New York:Oxford University Press,1993. [7] Prussing J E. Optimal two-impulse rendezvous using multiple-revolution Lambert solutions[J].Journal of Spacecraft and Rockets,2003,40(6):952-959. [8] Prussing J E. Geometrical interpretation of the angles α and β in Lambert-s problem[J].J Guidance and Control,1979,2(5):442- 443. [9] Sandrik S. Primer-optimized results and trends for circular phasing and other circle-to-circle impulsive coplanar rendezvous. USA:Department of Aerospace Engineering,University of Illinois at Urbana-Champaign,2006. [10] 陈统, 徐世杰.基于遗传算法的最优Lambert双脉冲转移[J].北京航空航天大学学报,2007,33(3):273-277 Chen Tong,Xu Shijie.Optimal Lambert two-impulse transfer using genetic algorithm[J].Journal of Beijing University of Aeronautics and Astronautics,2007,33(3):273-277 (in Chinese) [11] 卢山, 陈统,徐世杰.基于自适应模拟退火遗传算法的最优Lambert转移[J].北京航空航天大学学报,2007,33(10):1191-1195 Lu Shan,Chen Tong,Xu Shijie.Optimal Lambert transfer based on adaptive simulated annealing genetic algorithm[J].Journal of Beijing University of Aeronautics and Astronautics,2007,33(10):1191-1195 (in Chinese) [12] Shen Haijun, Panagiotis Tsiotras.Optimal two-impulse rendezvous using multiple-revolution Lambert solutions [J].Journal of Guidance,Control,and Dynamics,2003,26(1):50-61. [13] 韩潮, 谢华伟.空间交会中多圈Lambert变轨算法研究[J].中国空间科学技术,2004(5):9-14 Han Chao,Xie Huawei.Research on algorithm of loopy Lambert transfer in space rendezvous[J].Chinese Space Science and Technology,2004(5):9-14(in Chinese) [14] 朱仁璋, 蒙薇.航天器交会两点边界值问题[J].宇航学报,2006,27(6):1182-1186 Zhu Renzhang,Meng Wei.Two point boundary value problem in space rendezvous [J].Journal of Astronautics,2006,27(6):1182-1186 (in Chinese) [15] 朱仁璋, 蒙薇,胡锡婷.航天器交会中的Lambert问题[J].中国空间科学技术,2006(6):49-55 Zhu Renzhang,Meng Wei,Hu Xiting.Lambert-s problem in spacecraft rendezvous [J].Chinese Space Science and Technology,2006(6):49-55 (in Chinese)
点击查看大图
计量
- 文章访问数: 3514
- HTML全文浏览量: 382
- PDF下载量: 1520
- 被引次数: 0