留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用支持向量机的眼睑参数疲劳预测

胡淑燕 郑钢铁

彭 坤, 徐世杰, 陈 统等 . 基于引导型人工免疫算法的最优Lambert变轨[J]. 北京航空航天大学学报, 2010, 36(1): 6-9.
引用本文: 胡淑燕, 郑钢铁. 应用支持向量机的眼睑参数疲劳预测[J]. 北京航空航天大学学报, 2009, 35(8): 929-932.
Peng Kun, Xu Shijie, Chen Tonget al. Optimal Lambert transfer based on guiding artificial immune algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(1): 6-9. (in Chinese)
Citation: Hu Shuyan, Zheng Gangtie. Driver fatigue prediction with eyelid related parameters by support vector machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(8): 929-932. (in Chinese)

应用支持向量机的眼睑参数疲劳预测

基金项目: 欧盟SENSATION资助项目FP6(507231)
详细信息
    作者简介:

    胡淑燕(1982-),女,山东诸城人,博士生,huyan@sa.buaa.edu.cn.

  • 中图分类号: U 491.31; TP 391.4

Driver fatigue prediction with eyelid related parameters by support vector machine

  • 摘要: 研究表明疲劳驾驶是引起交通事故的重要原因之一,因此有必要采取预防措施,而能够提前对事故进行准确预报并保证低误报警率是问题的关键所在.提出了利用多眼睑运动特征参数建立支持向量机模型进行疲劳预测的方法,其中眼睑运动特征参数是从驾驶模拟器上采集的眼电信号提取出的.根据Karolinska睡眠等级选出25名缺乏睡眠并在实验中撞到振动带的驾驶员,保证其开始驾驶阶段是警觉的,而事故发生阶段是疲劳的,然后将20名驾驶员作为训练对象,另5名驾驶员作为验证对象.结果表明,所用的方法可以提前至少5 min对由疲劳导致的事故进行预报.

     

  • [1] Hamada T, Ito T, Adachi K, et al. Detecting method for drivers-drowsiness applicable to individual features [J]. IEICE Trans on Information and Systems,2004,E87-D (1):88-96[2] Wierwille W W, Lewin M G, Fairbanks R J. Final reports: research on vehicle-based driver status/performance Monitoring, Part III . DOT HS 808 640, 1996[3] Hayami T, Matsunaga K, Shidoji K, et al. Detecting drowsiness while driving by measuring eye movement-a pilot study In Proc 5th Int Conference on Intelligent Transportation Systems. USA: IEEE, 2002:156-161[4] Ji Q, Yang X J. Real-time eye, gaze, and face pose tracking for monitoring driver vigilance [J]. Real-Time Imaging,2002, 8:357-377[5] Liu X, Xu F L, Fujimura K. Real-time eye detection and tracking for driver observation under various light conditions IEEE Intelligent Vehicle Symposium. USA: IEEE, 2002:344-351[6] Morris T L, Miller J C. Electrooculographic and performance indices of fatigue during simulated flight [J]. Biological Psychology, 1996,42:343-360[7] Ji Q, Zhu Z Z,Lan P L. Real-time nonitrusive monitoring and prediction of driver fatigue [J]. IEEE Transactions on Vehicular Technology,2004, 53(4):1052-1068[8] Caffier P P, Erdmann U,Ullsperger P. Experimental evaluation of eye-blink parameters as a drowsiness measure [J]. Eur J Appl Physiol,2003,89:319-325[9] Burges C J C. A tutorial on support vector machines for pattern recognition [J]. Data Min Knowl Disc, 1998,2 (2):121-167[10] Cristiannini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods[M]. Cambridge: Cambridge University Press, 2000[11] kerstedt T, Gillberg M. Subjective and objective sleepiness in the active individual [J]. International Journal of Neuroscience,1990,52:29-37[12] Chang C C, Lin C J. LIBSVM: a library for support vector machines . 2001,Taipei:National Taiwom University,
  • 期刊类型引用(11)

    1. 高慕云,李榜华,马浩亮,张福礼,贺可太. 基于Petri网和改进遗传算法的多资源调度问题. 计算机工程与设计. 2024(06): 1674-1682 . 百度学术
    2. 崔巍巍,王德芯,李连峰,王亮,刘冠军,陈志伟. 流程驱动的导弹装备保障资源配置仿真与优化. 系统工程与电子技术. 2024(09): 3040-3049 . 百度学术
    3. 唐丽君,彭石燕. 混合花朵授粉算法在作业车间调度中的应用. 工程数学学报. 2022(06): 997-1004 . 百度学术
    4. 李翰墨,叶军,杨立芳,张旭. 柔性作业车间调度问题及其算法的研究. 轴承. 2020(11): 19-23 . 百度学术
    5. 何东东. 柔性作业车间调度优化的改进遗传退火算法. 制造业自动化. 2019(01): 83-88 . 百度学术
    6. 王慧敏,周筑南,张凤航,郭慧,景一. 基于车间作业调度模型的RGV动态调度. 物联网技术. 2019(10): 64-66+70 . 百度学术
    7. 仲美稣,杨勇生,周亚民,马泽宇. 基于群智能算法的自动化码头协同调度研究. 计算机应用研究. 2019(12): 3756-3759 . 百度学术
    8. 朱兴林. 动态蚁群遗传混合算法在煤炭运输中的应用. 自动化与仪器仪表. 2018(09): 180-181+184 . 百度学术
    9. 王艺翔,洪良,田海霖,王晓华. 基于时间Petri网的自动制造系统排产优化方法. 西安工程大学学报. 2018(05): 590-596 . 百度学术
    10. 轩华,秦莹莹,王薛苑,张百林. 带恶化工件的PFS调度的混合遗传算法. 工业工程与管理. 2017(03): 1-6+15 . 百度学术
    11. 黄俊生,广晓平. 关于生产车间作业优化调度效率仿真研究. 制造业自动化. 2017(10): 95-99 . 百度学术

    其他类型引用(31)

  • 加载中
计量
  • 文章访问数:  3417
  • HTML全文浏览量:  90
  • PDF下载量:  1161
  • 被引次数: 42
出版历程
  • 收稿日期:  2008-07-07
  • 网络出版日期:  2009-08-31

目录

    /

    返回文章
    返回
    常见问答