Fault diagnosis for civil aviation aircraft based on rough-neural network
-
摘要: 针对传统神经网络故障诊断过程中网络训练时间长、结构复杂以及仅能进行单值输入的缺陷,设计了一种基于粗神经网络的民用飞机故障诊断系统.将粗糙集理论应用在神经网络的前端对民用飞机故障样本数据进行约简处理,以此去除冗余属性的干扰,克服了无关样本数据对网络学习性能的影响,简化了网络结构;利用粗神经元代替传统神经元,提高了网络性能,扩展了网络的应用范围.通过对空中客车A320飞机的故障诊断试验验证了该方法的有效性.Abstract: To solve the defects of traditional fault diagnosis neural network, such as long training time, complex structure and single-valued input, a fault diagnosis system for civil aircraft based on rough-neural network was proposed. Rough set theory was applied to the front-end neural network to reduce the data of civil aircraft fault sample so as to remove the disturbance of redundant attributes, and overcome the impaction of unrelated data that imposed on the performance of network learning, simplify network structure. Secondly, by using the rough neurons instead of the traditional neurons, the performance of network was improved, and the scope of the application of network was expanded. The effectiveness of this method was verified by Airbus A320 aircraft fault diagnosis test .
-
Key words:
- civil aviation /
- fault diagnosis /
- rough-neural network /
- rough set theory /
- reduction /
- auxiliary power system
-
[1] 王广,李军.基于粗糙集理论的航空发动机故障诊断[J]. 航空发动机, 2005, 31(4):51-53 Wang Guang, Li Jun. Aeroengine fault diagnosis based on rough sets theory[J]. Aeroengine, 2005, 31(4):51-53(in Chinese) [2] 胡寿松,徐德友,张敏. 基于粗糙神经网络的歼击机操纵面智能故障诊断[J]. 南京师范大学学报(工程技术版), 2004, 4(3):1-9 Hu Shousong, Xu Deyou, Zhang Min. Intelligent fault diagnosis of fighter control surfaces based on rough neural network[J]. Journal of Nanjing Normal University (Engineering and Technology), 2004, 4(3):1-9(in Chinese) [3] 杜昌平,周德云,江爱伟.粗糙神经网络的航空电子系统故障诊断方法[J]. 火力与指挥控制, 2006, 31(10):48-50 Du Changping, Zhou Deyun, Jiang Aiwei. A fault diagnose method of avionics system based on rough set neural network[J]. Fire Control and Command Control, 2006, 31(10):48-50(in Chinese) [4] Pawlak Z. Rough sets: theoretical aspects of reasoning about data[M]. London: Kluwer Acasemic Publishers, 1991 [5] 王国胤.Rough集理论与知识获取[M].西安: 西安交通大学出版社, 2001 Wang Guoyin. Rough sets theory and knowledge acquisition[M]. Xi’an: Xi’an Jiaotong University Press, 2001(in Chinese) [6] 吴今培, 孙德山.现代数据分析[M].北京: 机械工业出版社, 2006 Wu Jinpei, Sun Deshan. Modern data analysis[M]. Beijing: China Machine Press, 2006(in Chinese) [7] Lingras P. Comparison of neofuzzy and rough neural networks[J]. Information Sciences, 1998, 110:207-215.
点击查看大图
计量
- 文章访问数: 3357
- HTML全文浏览量: 21
- PDF下载量: 1086
- 被引次数: 0