Design and analysis of based on PNN and FNN controller
-
摘要: 模糊神经网络和预测神经网络分别是基于经验和学习的新型神经网络控制系统,通过在卧式电液仿真转台中框控制器上分别采用这2种控制方法来研究它们的控制特性和应用范围.其中,模糊神经网络结合了模糊控制的经验和神经网络的学习能力,但控制精度取决于人为经验;所研究的预测神经网络采用了基于非线性自回归滑动平均模型建立预测模型,实现在线学习和在线控制,但初始阶段控制精度不高.仿真研究证明,根据具体的控制对象采用适当的控制方法或是将2种方法合理地结合起来将会达到较高的控制精度.
-
关键词:
- 模糊神经网络 /
- 预测神经网络 /
- 非线性自回归滑动平均模型
Abstract: Fuzzy neural net(FNN) and predictive neural net(PNN) are new neural net controllers, two neural net controllers based on practical methods from actual control system and self-study. FNN and PNN controllers avoid many shortcomings of usual artificial neural net. Two neural nets for electronic-hydraulic simulating rotary-table′s middle gimbal were used to research their control characteristics and application ranges.FNN controller unites fuzzy control experiences and neural net self-study capability, but control precision only depends on summarize personal experiences; PNN controller uses nonlinear auto regressive moving average (NARMA) model for predictive model, makes real time study and control for all process,but control precisions is lower in start phase. Simulation results of FNN and PNN controllers show that differnet methods for different control objects or unit two methods for different control objects have achieved high precisions. -
[1] 李洪仁.液压控制系统[M].北京:国防工业出版社,1990:111-113 Li Hongren.Hydraulic control system[M].Beijing:National Defense Industry Press,1990:111-113(in Chinese) [2] 张友旺,桂卫华.基于自适应模糊神经网络的摩擦力分部补偿算法[J].控制与决策,2005,20(3):357-359 Zhang Youwang,Gui Weihua.Partition compensation for fricition based on adaptive fuzzy neural network[J].Control and Decision. 2005.20(3),357-359(in Chinese) [3] Narendra K S,Parthasarathy K. Identification control of dynamical systems using neural networks[J].IEEE Transactions on Neural Networks,1990,1(1):4-27 [4] Zhang J, Morris A J. Longrange predictive models based on locally recurrent neural net works Preprints of IFACYAC95. Beijing:, 1995,10(2):708-712 [5] Tomizuka M, Hu J, Chiu T. Synchronization of two motion control axes under adaptive feedforward control[J].Trans of the ASME,2002,114(3):2-7 [6] Schilling R J, Carroll J J. Approximation of nonlinear systems with radial basis function neural networks[J].IEEE Transactions on Neural Networks,2001,12(1):1-15
点击查看大图
计量
- 文章访问数: 2479
- HTML全文浏览量: 130
- PDF下载量: 1021
- 被引次数: 0