Single event charge collection in CMOS device
-
摘要: 针对90 nm CMOS(Complementary Metal Oxide Semiconductor)工艺,采用三维数值模拟方法,研究了反相器中NMOS(Negative channel-Metal-Oxide-Semiconductor)晶体管与PMOS(Positive channel-Metal-Oxide-Semiconductor)晶体管的单粒子瞬变(SET,Single Event Transient)电流脉冲,深入分析了PMOSFET(Positive channel-Metal-Oxide-Semiconductor Field-Effect Transistor)与NMOSFET(Negative channel-Metal-Oxide-Semiconductor Field-Effect Transistor)发生单粒子效应时电荷输运过程和电荷收集机理.研究结果表明,由于电路耦合作用,反相器中晶体管的电荷收集与单个晶体管差异显著;反相器中PMOS晶体管电荷收集过程中存在寄生双极放大效应,NMOS晶体管中不存在寄生双极放大效应;由于双极放大效应,90 nm工艺下PMOS晶体管产生的SET电压脉冲比NMOS晶体管产生的电压脉冲持续时间更长,进而导致PMOS晶体管的SET效应更加敏感.研究结果为数字电路SET的精确建模、进行大规模集成电路SET效应模拟提供了参考依据.Abstract: Three dimensions technology computer aided design (3D TCAD) simulation was used to study single event transient (SET) in an invert with 90 nm bulk complementary metal oxide semiconductor (CMOS) technology. The charge transport and charge collection mechanism were analyzed in both positive channel-metal-oxide-semiconductor field-effect transistor (PMOSFET) and negative channel-metal-oxide-semiconductor field-effect transistor (NMOSFET) by numerical simulation. Results show that the radiation induced charge collection mechanism in an inverter device is different from single MOSFET due to coupling circuit effect, and the parasitic bipolar amplification component takes large proportion in charge collection of PMOSFET, but not in NMOSFET. The SET voltage pulse in PMOSFET is wider than NMOSFET and PMOSFET is more sensitive for SET in the submicron technology integrated circuit. The results provide the foundation for SET modeling in digital microcircuits and the model is used for SET simulation in large scale integrated circuits.
-
[1] Benedetto J M, Eaton P H,Mavis D G,et al.Digital single event transient trends with technology node scaling[J].Nuclear Science,IEEE Transactions on,2006,53(6):3462-3465 [2] Benedetto J M, Eaton P H,Avery K,et al.Heavy ion-induced digital single-event transients in deep submicron processes[J].Nuclear Science,IEEE Transactions on,2004, 51(6): 3480-3485 [3] Amusan O A, Witulsk A F,Massengill L W,et al.Charge collection and charge sharing in a 130 nm CMOS technology[J].Nuclear Science,IEEE Transactions on,2006,53(6):3253-3258 [4] Olson B D, Ball D R,Warren K M,et al.Simultaneous single event charge sharing and parasitic bipolar conduction in a highly-scaled SRAM design[J].Nuclear Science,IEEE Transactions on,2005,52(6):2132-2136 [5] Olson B D, Amusan O A,Dasgupta S,et al.Analysis of parasitic PNP bipolar transistor mitigation using well contacts in 130 nm and 90 nm CMOS technology[J].Nuclear Science,IEEE Transactions on,2007,54(4):894-897 [6] 刘征,陈书明, 梁斌,等.单粒子瞬变中的双极放大效应研究.[J].物理学报,2010,59(1):649-654 Liu Zheng,Chen Shuming,Liang Bin,et al.Research of bipolar amplification effect in single event transient[J].Acta Physica Sinica,2010,59(1):649-654(in Chinese) [7] 卓青青, 刘红侠,郝跃.NMOS器件中单粒子瞬态电流收集机制的二维数值分析[J].物理学报,2012,61(21):218501-1-7 Zhuo Qingqing,Liu Hongxia,Hao Yue.Two-dimensional numerical analysis of the collection mechanism of single event transient current in NMOSFET[J].Acta Physica Sinica,2012,61(21):218501-1-7(in Chinese) [8] Liu Z, Chen S M,Chen J J,et al.Parasitic bipolar amplification in single event transient and its temperature dependence[J].Chinese Physics B,2012,21(9):099401-1-6 [9] Arslanbekov R, Fedoseyev A,Turowski M.Mixed-mode simulations of ICs with complex nuclear events from MRED/Geant4 with 3D TCAD[C]//16 th International Conference on Mixed Design of Integrated Circuits and Systems.Piscataway,NJ:IEEE,2009:468-471 [10] Chen J J, Chen S M,He Y,et al.Novel layout technique for n-hit single-event transient mitigation via source-extension[J].Nuclear Science,IEEE Transactions on,2012,59(6):2859-2866 [11] BlackJ D, Ball D R,Fleetwood D M,et al.Charactering SRAM single event upset in terms of single and multiple node charge collection[J].Nuclear Science,IEEE Transactions on,2008, 55(6): 2943-2947 期刊类型引用(14)
1. 陈平平,陈家辉,王宣达,方毅,王锋. Dice系数前向预测的快速正交正则回溯匹配追踪算法. 电子与信息学报. 2024(04): 1488-1498 . 百度学术
2. 张峰,凌锦炜,刘叶楠,赵黎. 基于DFT-SAMP算法的MIMO-VLC系统压缩感知信道估计. 光子学报. 2023(04): 52-62 . 百度学术
3. 张家慧,王英志,李新格,沈亮. 一种改进型烟花重构算法及其在冲击波测试领域中的应用. 长春理工大学学报(自然科学版). 2022(02): 74-83 . 百度学术
4. 于立君,钟飞,王辉,原新. 基于纹理信息的图像重构实验项目改进算法设计. 实验技术与管理. 2021(05): 154-157+161 . 百度学术
5. 季策,王金芝,李伯群. 基于RSAMP算法的OFDM稀疏信道估计. 系统工程与电子技术. 2021(08): 2290-2296 . 百度学术
6. 刘洲洲,张倩昀,马新华,彭寒. 基于优化离散差分进化算法的压缩感知信号重构. 吉林大学学报(工学版). 2021(06): 2246-2252 . 百度学术
7. 陶亮,刘海鹏,王蒙,董士谦. 基于回溯正则化的前向搜索正交匹配追踪算法研究. 陕西理工大学学报(自然科学版). 2020(02): 37-43 . 百度学术
8. 丁倩,胡茂海. 一种改进的压缩感知重构算法. 红外技术. 2019(04): 364-369 . 百度学术
9. 丁佳静,武雪姣,李雪晴. 稀疏度自适应回溯追踪算法改进. 软件导刊. 2019(08): 59-62 . 百度学术
10. 江晓林,唐征宇,渠苏苏. 基于SWOMP分段回溯的压缩感知改进算法. 黑龙江科技大学学报. 2019(04): 501-505 . 百度学术
11. 肖沈阳,金志刚,苏毅珊,武晋. 压缩感知OFDM稀疏信道估计导频设计. 北京航空航天大学学报. 2018(07): 1447-1453 . 本站查看
12. 赵东波,李辉. 变步长SAMP算法在雷达目标识别中的应用. 控制工程. 2018(08): 1381-1385 . 百度学术
13. 李琪,张欣,张平康,张航. 阈值稀疏自适应匹配追踪图像重构算法. 小型微型计算机系统. 2018(11): 2528-2532 . 百度学术
14. 高宇轩,孙华燕,张廷华,都琳. 压缩编码孔径成像重构算法. 兵器装备工程学报. 2017(10): 191-196 . 百度学术
其他类型引用(8)
-

计量
- 文章访问数: 1473
- HTML全文浏览量: 111
- PDF下载量: 502
- 被引次数: 22