Dynamic index based method for multi-objective optimization in aircraft conceptual design
-
摘要: 为提高飞机方案多目标优化过程中最优解的搜索效率,对多目标方案的比较评价方法及其在优化中的应用进行了研究.提出了可用于多目标方案对比评价的基准指标,并建立了利用新生成方案的目标值对基准指标进行动态更新的动态指标.通过采用动态指标构造适应度函数改进了多目标遗传算法,进行的双目标优化算例表明,改进的算法能够获得更优的Pareto前沿.采用改进的多目标优化方法对一种轻型战斗机概念方案进行了优化设计,设置了重量、气动、隐身等4个优化目标,优化结果验证了基于动态指标改进的多目标遗传算法在飞机概念方案设计优化中的有效性.Abstract: To increase the search efficiency of optimal solution in aircraft conceptual design multi-objective optimization, comparison evaluation technique for multi-objective model was studied along with the implementation. Index benchmark (IB) was proposed for multi-objective model comparison, and dynamic index (DI) was conducted by updating the IB with the objective value of new solutions. Then multi-objective genetic algorithm (MOGA) was improved through conducting the fitness model with DI. The results of some optimization with two objectives indicate that better Pareto front can be obtained through the improved algorithm. Finally, the improved MOGA with DI (DIMOGA) was used in the multi-objective optimization of a light fighter conceptual design, including four optimal objectives in discipline on weight, aerodynamic, and stealth. The optimization results validate the effectiveness of DIMOGA method in the aircraft conceptual design optimization.
-
[1] 李倩, 詹浩, 朱军.基于Pareto遗传算法的机翼多目标优化设计研究[J].西北工业大学学报, 2010, 28(1):134-137 Li Qian, Zhan Hao, Zhu Jun.Exploring combination of Pareto genetic algorithm(GA)with aerodynamic analysis software for multi-objective optimization of wing[J].Journal of Northwestern Polytechnical University, 2010, 28(1):134-137(in Chinese) [2] 沈伋, 韩丽川, 沈益斌.基于粒子群算法的飞机总体参数优化[J].航空学报, 2008, 29(6):1538-1541 Shen Ji, Han Lichuan, Shen Yibin.Optimization of airplane primary parameters based on particle swarm algorithm[J].Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1538-1541(in Chinese) [3] 刘宝宁, 章卫国, 李广文, 等.一种改进的多目标粒子群优化算法[J].北京航空航天大学学报, 2013, 39(4):458-462 Liu Baoning, Zhang Weiguo, Li Guangwen, et al.Improved multi-objective particle swarm optimization algorithm[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(4):458-462(in Chinese) [4] Cabral L V, Paglione P, De Mattos B S.Multi-objective design optimization framework for conceptual design of families of aircraft[C]//44th AIAA Aerospace Sciences Meeting.Reston, VA:AIAA, 2006:16135-16146 [5] 方卫国, 师瑞峰. 飞机方案多目标优化的Pareto遗传算法[J].北京航空航天大学学报, 2003, 29(8):668-672 Fang Weiguo, Shi Ruifeng.Pareto genetic algorithms for multi-objective optimization of aircraft conceptual design[J].Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(8): 668-672(in Chinese) [6] 白振东, 刘虎, 徐敏, 等.飞机总体设计优化中的多目标方案优选方法[J].航空学报, 2009, 30(8):1447-1453 Bai Zhendong, Liu Hu, Xu Min, et al.Preferred selection method for multi-objective concepts in aircraft conceptual design optimization[J].Acta Aeronautica et Astronautica Sinica, 2009, 30(8): 1447-1453(in Chinese) [7] 邱志平, 张宇星. 改进遗传算法在飞机总体参数优化中的应用[J].北京航空航天大学学报, 2008, 34(10):1182-1185 Qiu Zhiping, Zhang Yuxing.Application of improved genetic algorithms in aircraft conceptual parameter optimization design[J].Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(10):1182-1185(in Chinese) [8] Sareni B, Krahenbuhl L, Nicolas A.Niching genetic algorithms for optimization in electromagnetics I.fundamentals[J].IEEE Transactions on Magnetics, 1998, 34(5):2984-2987
点击查看大图
计量
- 文章访问数: 1259
- HTML全文浏览量: 157
- PDF下载量: 469
- 被引次数: 0