Vibration model of coilable mast considering slack diagonals
-
摘要: 盘绕式伸展臂展开后,由于预紧力的作用,横杆被压缩至弯曲状态,同时斜拉索张紧.振动幅度较大时,斜拉索会松弛.以建立一种可以描述上述情况下盘绕式伸展臂基频特性的模型为目的,针对弯曲横杆及可松弛斜拉索做了如下处理,用较小的弹性模量及相应的预应变来模拟横杆受压弯曲后刚度较小,并具有预应力的特点;用一根可拉压杆模拟两根交替松弛的斜拉索.按照上述思想将松弛前后的盘绕式伸展臂作为两种结构,分别在Ansys中建立模型,计算得到这两种结构的基频.之后将伸展臂等效为满足分段线性刚度特性的连续梁模型,其分段刚度对应斜拉索松弛前后两种结构.结合有限元模型得到的斜拉索松弛判据,建立振幅较大时盘绕式伸展臂的振动方程.使用等价线性化方法,得到盘绕式伸展臂等效频率随端部振幅的变化关系,并用Ansys的瞬态分析对上述等效频率结果进行了仿真验证.上述模型及结果可以作为盘绕式伸展臂的设计指导及振动控制的理论基础.Abstract: After the coilable mast deploying, the battens are curved and the diagonals are tensioned because of the preload. The diagonals can be slack for large amplitude vibration. A vibration model was constructed to describe the fundamental frequency characteristic of that status. The curved batten and slack of diagonals was considered. The batten with small stiffness in curved status and preload was simulated with a rod with small elastic modulus and corresponding strain, and one rod element was modeled to simulate two cables which slacked in different time. The coilable mast before and after diagonals slack was treated as two different structures, and their finite element method (FEM) models were constructed with Ansys. Two fundamental frequencies were computed. Then the coilable mast was equivalent to a continuous beam with pricewise linear stiffness, the pricewise stiffness correspond to the different structure before and after the diagonals slack. Considering the criterion of diagonals slack obtained with that FEM model, the vibration equation of coilable mast with large amplitude was established. Using equivalent linearization method, the relationship between equivalent frequency of coilable mast and the top-end amplitude can be obtained. The result can be verified with transient analysis of Ansys. The model and result is helpful for the design and vibration control of coilable mast.
-
Key words:
- coilable mast /
- diagonals /
- slack /
- pricewise linear /
- fundamental frequency
-
[1] Murphy D, Trautt T, McEachen M, et al.Progress and plans for system demonstration of a scalable square solar sail[C]//Advances in the Astronautical Sciences.Maui, Havaii:Univelt Inc, 2005, 119(1):51-68 [2] Murphy D M, Macy B D, Caspar J L.Demonstration of a 10-m solar sail system[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference.Palm Springs, California:AIAA, 2004:698-708 [3] Murphy D M, Murphey T W.Scalable solar-sail subsystem design concept[J].Journal of Spacecraft and Rockets, 2003, 40(4):539-547 [4] Greschik G. Truss beam with tendon diagonals-mechanics and designs[J].AIAA Journal, 2008, 46(3):557-567 [5] Murphey T W. Symbolic equations for the stiffness and strength of straight longeron trusses[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference.Reston, VA:AIAA, 2006:6298-6311 [6] 郭宏伟, 刘荣强, 邓宗全.柔性索对空间索杆铰接式伸展臂性能影响分析[J].哈尔滨工业大学学报, 2010, 42(1):55-59 Guo Hongwei, Liu Rongqiang, Deng Zongquan.Influence of flexible cable on performance of space cable-strut deployable articulated mast[J].Journal of Harbin Institute of Technology, 2010, 42(1):55-59(in Chinese) [7] Chen T, Wang J T.Modeling of triangular lattice space structures with curved battens[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference.Austin, Texas:AIAA, 2005:2096-2109 [8] McEachen M E, Trautt T A.Confirmation of new analytics for ultra-light lattice column strength using a 40-m flight article[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference.Reston, VA:AIAA, 2009:2169-1-18 [9] Wang J, Li D X, Jiang J P.Finite element modeling and modal analysis of coilable mast[J].Applied Mechanics and Materials, 2012, 226-228:299-302 [10] Jones T C, Smith H B, Mikulas M, et al.Finite element modeling and analysis of large pretensioned space structures[J].Journal of Spacecraft and Rockets, 2007, 44(1):183-193 [11] Jiang D, Pierre C, Shaw S W.Large-amplitude non-linear normal modes of piecewise linear system[J].Journal of Sound and Vibration, 2004, 272(3):869-891 [12] 闫政涛, 翁雪涛, 朱石坚, 等.刚度分段线性系统的自由振动解析研究[J].噪声与振动控制, 2010, 30(6):18-22 Yan Zhengtao, Weng Xuetao, Zhu Shijian, et al.Analytical solution of free vibration of systems with piecewise linear stiffness[J].Noise and Vibration Control, 2010, 30(6):18-22(in Chinese) [13] 吕娜玺. 两自由度分段线性系统模态分析[D].兰州:兰州交通大学, 2012 Lü Naxi.Normal modal analysis for a two degrees-of-freedom piecewise linear systems[D].Lanzhou:Lanzhou Jiaotong University, 2012(in Chinese) [14] 闻邦椿, 李以农, 徐培民.工程非线性振动[M].北京:科学出版社, 2007:32-37 Wen Bangchun, Li Yinong, Xue Peimin.Engineering nonlinear vibration[M].Beijing:Science Press, 2007:32-37(in Chinese) [15] 刘延柱. 弹性细杆的非线性力学:DNA力学模型的理论基础[M].北京:清华大学出版社, 2006 Liu Yanzhu.Nonlinear mechanics of thin elastic rod:theoretical basis of mechanical model of DNA[M].Beijing:Tsinghua University Press, 2006(in Chinese) [16] 张淑杰, 李瑞祥, 丁同才.盘绕式杆状展开机构的设计与力学分析[J].力学季刊, 2006, 27(2):341-347 Zhang Shujie, Li Ruixiang, Ding Tongcai.Design and mechanical analysis of coilable lattice mast[J].Chinese Quarterly of Mechanics, 2006, 27(2):341-347(in Chinese) [17] Jiang D, Pierre C, Shaw S W.Large-amplitude non-linear normal modes of piecewise linear systems[J].Journal of Sound and Vibration, 2004, 272(3-5):869-891 [18] 张亚辉, 林家浩. 结构动力学基础[M].大连:大连理工大学出版社, 2007 Zhang Yahui, Lin Jiahao.Fundamentals of structural dynamics[M].Dalian: Dalian University of Technology Press, 2007(in Chinese)
点击查看大图
计量
- 文章访问数: 1299
- HTML全文浏览量: 201
- PDF下载量: 420
- 被引次数: 0