留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多元线性回归模型的增量算法

王惠文 魏嫄 黄乐乐

王惠文, 魏嫄, 黄乐乐等 . 多元线性回归模型的增量算法[J]. 北京航空航天大学学报, 2014, 40(11): 1487-1491. doi: 10.13700/j.bh.1001-5965.2013.0680
引用本文: 王惠文, 魏嫄, 黄乐乐等 . 多元线性回归模型的增量算法[J]. 北京航空航天大学学报, 2014, 40(11): 1487-1491. doi: 10.13700/j.bh.1001-5965.2013.0680
Wang Huiwen, Wei Yuan, Huang Leleet al. Incremental algorithm of multiple linear regression model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(11): 1487-1491. doi: 10.13700/j.bh.1001-5965.2013.0680(in Chinese)
Citation: Wang Huiwen, Wei Yuan, Huang Leleet al. Incremental algorithm of multiple linear regression model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(11): 1487-1491. doi: 10.13700/j.bh.1001-5965.2013.0680(in Chinese)

多元线性回归模型的增量算法

doi: 10.13700/j.bh.1001-5965.2013.0680
基金项目: 国家自然科学基金资助项目(71031001);北京航空航天大学博士研究生创新基金资助项目(YWF-14-YJSY-027);国家高技术研究发展计划资助(SS2014AA012303)
详细信息
    作者简介:

    王惠文(1957-),女,辽宁大连人,教授,wanghw@vip.sina.com

    通讯作者:

    黄乐乐

  • 中图分类号: O212

Incremental algorithm of multiple linear regression model

  • 摘要: 伴随着各领域信息化的发展,数据多呈现出快速、连续流入的特点.面向海量不断更新的数据集,在具有广泛使用价值的线性回归模型中,考虑引入增量算法.通过基于叉积矩阵的增量计算公式,得到最小二乘估计模型的增量算法,并进一步扩展到其他的模型估计量和检验统计量中.该增量算法运用了全部的数据信息,与使用全部数据建模具有完全相同的结果.算法节约了数据读取时间,减小了数据存储传输的压力,从而提高了计算效率.数据仿真实验验证了算法的有效性.

     

  • [1] Tomczak J M,Gonczarek A.Decision rules extraction from data stream in the presence of changing context for diabetes treatment[J].Knowledge and Information Systems,2013,34(3):521-546
    [2] Yang L,Cao J N,Tang S J,et al.A framework for partitioning and execution of data stream applications in mobile cloud computing[C]//IEEE Fifth International Conference on Cloud Computing.Washington,DC:IEEE Computer Society,2012:794-802
    [3] Coppock H W,Freund J E.All-or-none versus incremental learning of errorless shock escapes by the rat[J].Science,1962,135(3500):318-319
    [4] Syed N A,Liu H,Sung K K.Handling concept drifts in incremental learning with support vector machines[C]//Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Diego,CA:ACM,1999:371-321
    [5] Gaber M M,Zaslavsky A,Krishnaswamy S.Mining data streams:a review[J].ACM Sigmod Record,2005,34(2):18-26
    [6] Domingos P,Hulten G.A general method for scaling up machinelearning algorithms and its application to clustering[C]//Proceedings of the Eighteenth International Conference on Machine Learning(ICML 2001).Williams College,Williamstown,MA:Morgan Kaufmann,2001:106-113
    [7] Babcock B,Datar M,Motwani R.Load shedding techniques for data stream systems[C]//The 2003 Workshop on Management and Processing of Data Streams.San Diego,CA:ACM,2003
    [8] Papapetrou O,Garofalakis M,Deligiannakis A.Sketch-based querying of distributed sliding-window data streams[J].Proceedings of the VLDB Endowment,2012,5(10):992-1003
    [9] GAMA J.Data stream mining:the bounded rationality[J].Informatica,2013,37(1):21-25
    [10] Nath S,Venkatesan R.Publicly verifiable grouped aggregation queries on outsourced data streams[C]//Data Engineering(ICDE),2013 IEEE 29th International Conference on.Washington,DC:IEEE Computer Society,2013:517-528
    [11] Muthukrishnan S.Data streams:algorithms and applications[M].Hanover,MA:Now Publishers Inc,2005
    [12] Krishnaswamy S,Gama J,Gaber M M.Mobile data stream mining:from algorithms to applications[C]//Mobile Data Management(MDM),2012 IEEE 13th International Conference on.Washington,DC:IEEE Computer Society,2012:360-363
    [13] 肖智,王明恺,谢林林.基于支持向量机的大学生助学贷款个人信用评价[J].清华大学学报:自然科学版,2006,46(S1):1120-1124 Xiao Zhi,Wang Mingkai,Xie Linlin.Personal credit evaluation of college student loans with support vector machines[J].Journal of Tsinghua University:Science and Technology,2006,46(S1):1120-1124(in Chinese)
    [14] Babcock B,Babu S,Datar M,et al.Models and issues in data stream systems[C]//Proceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems.Madison,WI:Association for Computing Machinery,2002:1-16
    [15] Golab L,Ozsu M T.Data stream management [J].Synthesis Lectures on Data Management,2010,2(1):1-73
    [16] 姚远.海量动态数据流分类方法研究[D].大连:大连理工大学,2013 Yao Yuan.The research on massive and dynamic data stream classification method[D].Dalian:Dalian University of Technology,2013(in Chinese)

  • 加载中
计量
  • 文章访问数:  1470
  • HTML全文浏览量:  89
  • PDF下载量:  904
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-26
  • 网络出版日期:  2014-11-20

目录

    /

    返回文章
    返回
    常见问答