Comparison of tissue vibration signal extraction algorithms in shearwave dispersion ultrasound vibrometry
-
摘要: 组织振动信号的提取是剪切波频散超声振动成像技术(SDUV)方法中的重要步骤.目前,SDUV方法中有两种常用的组织振动信号提取算法,正交解调法(QDM)和互功率谱法(CSM),但是未见比较这两种算法提取质量差异的相关研究.因此,构造了不同信噪比(SNRU)的参数化仿真超声回波信号模型,分别使用QDM和CSM从超声回波信号中提取组织振动信号,比较了两种方法的提取效果与计算效率.实验结果表明,当SNRU≥35 dB,两种算法在相同信噪比下提取出的信号所分离出的振动相位结果相近,标准差均小于1°,对于剪切波波速的计算结果没有太大影响.CSM的计算效率低于QDM的计算效率.因此,当SNRU<35 dB,为了减小振动信号初始相位的提取误差,应该使用CSM提取组织的振动信号.当SNRU≥35 dB,应该选择QDM提取组织的振动信号,以减少信号处理时间.本研究的发现有助于提高SDUV方法的检测效率.Abstract: Vibration extraction is an important step in shearwave dispersion ultrasound vibrometry (SDUV). There are two primary algorithms for vibration extraction in SDUV, the quadrature demodulation method (QDM) and the cross-spectrum method (CSM). However, the extraction qualities of QDM and CSM are under appropriate comparison. This study aimed at comparing the performance of QDM and CSM for tissue vibration extraction based on a parameterized model under various signal-to-noise ratio of ultrasound echoes (SNRU). Results show that when SNRU≥35 dB, the standard deviations of the estimated vibration phase using the vibration extracted by the two methods are close, which has no significant influence on the calculation result of the shear wave speed. The computation efficiency of CSM for vibration extraction is lower than that of QDM. As a conclusion, when SNRU<35 dB, the tissue vibration should be extracted by CSM to suppress the error of vibration phase estimation. However, when SNRU≥35 dB, the tissue vibration should be extracted by QDM to reduce the signal processing time. The findings may provide some strategy in SDUV, which can optimize the examination protocol and make it more efficient.
-
[1] Sarvazyan A P,Rudenko O V,Swanson S D,et al.Shear wave elasticity imaging:a new ultrasonic technology of medical diagnostics[J].Ultrasound in Medicine Biology,1998,24(9):1419-1435 [2] Sarvazyan A,Hall T J,Urban M W,et al.An overview of elastography-an emerging branch of medical imaging[J].Current Medical Imaging Reviews,2011,7(4):255-282 [3] Ophir J,Cespedes I,Ponnekanti H,et al.Elastography:a quantitative method for imaging the elasticity of biological tissues[J].Ultrasonic Imaging,1991,13(2):111-134 [4] Ophir J,Cespedes I,Garra B,et al.Elastography:ultrasonic imaging of tissue strain and elastic modulus in vivo[J].European Journal of Ultrasound,1996,3(1):49-70 [5] Fatemi M,Greenleaf J F.Ultrasound-stimulated vibro-acoustic spectrography[J].Science,1998,280(5360):82-85 [6] Bercoff J,Tanter M,Fink M.Supersonic shear imaging:a new technique for soft tissue elasticity mapping[J].IEEE Transactionson Ultrasonics Ferroelectrics Frequency Control,2004,51(4):396-409 [7] Salameh N,Peeters F,Sinkus R,et al.Hepatic viscoelastic parameters measured with MR elastography:correlations with quantitative analysis of liver fibrosis in the rat[J].Journal of Magnetic Resonance Imaging,2007,26(4):956-962 [8] Chen S G,Urban M W,Pislaru C,et al.Shearwave dispersion ultrasound vibrometry(SDUV)for measuring tissue elasticity and viscosity[J].IEEE Transactionson Ultrasonics Ferroelectrics Frequency Control,2009,56(1):55-62 [9] Yamakoshi Y,Sato J,Sato T.Ultrasonic imaging of internal vibration of soft tissue under forced vibration[J].IEEE Transactionson Ultrasonics Ferroelectrics Frequency Control,1990,37(2):45-53 [10] Zheng Y,Greenleaf J F.Stable and unbiased flow turbulence estimation from pulse echo ultrasound[J].IEEE Transactionson Ultrasonics Ferroelectrics Frequency Control,1999,46(5):1074-1087 [11] Hasegawa H,Kanai H.Improving accuracy in estimation of artery-wall displacement by referring to center frequency of RF echo[J].IEEE Transactionson Ultrasonics Ferroelectrics Frequency Control,2006,53(1):52-63 [12] Huang S R,Lerner R M,Parker K J.On estimating the amplitudeof harmonic vibration from the Doppler spectrum of reflected signals[J].Journal of the Acoustical Society of America,1990,88(6):2702-2712 [13] Zheng Y,Chen S G,Tan W,et al.Detection of tissue harmonic motion induced by ultrasonic radiation force using pulse-echo ultrasound and kalman filter[J].IEEE Transactionson Ultrasonics Ferroelectrics Frequency Control,2007,54(2):290-300 [14] Urban M W,Greenleaf J F.Harmonic pulsed excitation and motion detection of a vibrating reflective target[J].Journal of the Acoustical Society of America,2008,123(1):519-533 [15] Urban M W,Chen S G,Greenleaf J F.Harmonicmotion detection in a vibrating scattering medium[J].IEEE Transactionson Ultrasonics Ferroelectrics Frequency Control,2008,55(9):1956-1974 期刊类型引用(24)
1. 黄润琴,苏珉,刘佳,王涛. 基于小波变换与奇异值分解的飞鸟动态电磁散射特征提取. 广西师范大学学报(自然科学版). 2024(04): 74-89 . 百度学术
2. 刘闪亮,吴仁彪,屈景怡,乔晗,何雨龙. Bi-PPYOLO tiny:一种轻量型的机场无人机检测方法. 安全与环境学报. 2023(02): 480-488 . 百度学术
3. 韩虎虎,祁鑫,王鹤飞,李惠翔,齐吉祥. 基于无人机巡检的光伏面板缺陷识别方法. 电子设计工程. 2023(06): 176-179+184 . 百度学术
4. 薛珊,陈宇超,吕琼莹,曹国华. 基于双支路神经网络的无人机图像识别方法. 计算机仿真. 2023(07): 233-238 . 百度学术
5. 刘佳,徐群玉,陈唯实. 无人机雷达航迹运动特征提取及组合分类方法. 系统工程与电子技术. 2023(10): 3122-3131 . 百度学术
6. 苏志刚,王雪萌. 基于双层特征选择的空中目标分类算法研究. 激光与光电子学进展. 2022(02): 243-251 . 百度学术
7. 睢丙东,苗林星,于国庆. 基于深度学习的无人机目标检测系统. 科技风. 2022(06): 4-6 . 百度学术
8. 陈唯实,黄毅峰,陈小龙,卢贤锋,张洁. 机场探鸟雷达技术发展与应用综述. 航空学报. 2022(01): 184-204 . 百度学术
9. 张虹波,匡银虎. 基于齐次变换的低空无人机防撞导引控制方法. 计算机仿真. 2022(06): 42-46 . 百度学术
10. 何炜琨,柳振明,王晓亮. 微动特征和运动特征融合处理的鸟与旋翼无人机目标辨别方法. 电子测量与仪器学报. 2022(07): 33-43 . 百度学术
11. Weiming TIAN,Linlin FANG,Rui WANG,Weidong LI,Chao ZHOU,Cheng HU. A robust tracking method focusing on target fluctuation and maneuver characteristics. Science China(Information Sciences). 2022(11): 263-280 . 必应学术
12. 刘雷,刘大卫,王晓光,陈俊男,刘东兴. 无人机集群与反无人机集群发展现状及展望. 航空学报. 2022(S1): 4-20 . 百度学术
13. 冯维婷,梁青. 闪烁现象下基于微动补偿的旋转叶片参数估计方法. 信号处理. 2022(12): 2617-2627 . 百度学术
14. 卢晓东,辛佳宁,顾嘉耀,王俊康,程承. 析构时间相关模型的面对称飞行器机动估计. 宇航学报. 2021(02): 167-174 . 百度学术
15. 陈唯实,黄毅峰,陈小龙,卢贤锋,张洁. 基于模型转换频率估计的低空目标分类. 系统工程与电子技术. 2021(04): 927-936 . 百度学术
16. 侯旋,薛飞,陈涛. 无人机目标检测量子多模式识别优化算法. 计算机工程与应用. 2021(07): 228-236 . 百度学术
17. 杨名宇,王浩,王含宇. 基于深度学习与光电探测的无人机防范技术. 液晶与显示. 2021(09): 1323-1330 . 百度学术
18. 苏子康,李春涛,余跃,徐忠楠,王宏伦. 绳系拖曳飞行器高抗扰轨迹跟踪控制. 北京航空航天大学学报. 2021(11): 2234-2248 . 本站查看
19. 屈旭涛,庄东晔,谢海斌. “低慢小”无人机探测方法. 指挥控制与仿真. 2020(02): 128-135 . 百度学术
20. 陈唯实,黄毅峰,陈小龙,卢贤锋. 机场净空区飞鸟与非合作无人机目标识别. 民航学报. 2020(03): 27-33 . 百度学术
21. 陈唯实,黄毅峰,卢贤锋. 多传感器融合的无人机探测技术应用综述. 现代雷达. 2020(06): 15-29 . 百度学术
22. 蒋镕圻,白若楷,彭月平. 低慢小无人机目标探测技术综述. 飞航导弹. 2020(09): 100-105 . 百度学术
23. 陈小龙,陈唯实,饶云华,黄勇,关键,董云龙. 飞鸟与无人机目标雷达探测与识别技术进展与展望. 雷达学报. 2020(05): 803-827 . 百度学术
24. 薛珊,李广青,吕琼莹,毛逸维. 基于卷积神经网络的反无人机系统声音识别方法. 工程科学学报. 2020(11): 1516-1524 . 百度学术
其他类型引用(18)
-

计量
- 文章访问数: 1198
- HTML全文浏览量: 197
- PDF下载量: 823
- 被引次数: 42