Fast Bayesian DOA estimator using continuous ant colony optimization
-
摘要: 针对蚁群算法(ACO)在解决高维非线性搜索问题方面的有效性,提出了基于蚁群优化算法的Bayesian最大后验概率方位估计(ACO-Bayesian)快速方法.该方法将Bayesian最大后验概率函数作为蚁群算法的目标函数,选取若干一维高斯函数的加权和作为连续蚁群算法中信息量概率分布函数,经过有限次迭代得到Bayesian方法的非线性全局最优解.仿真结果表明,ACO-Bayesian方法在保持Bayesian方法优良性能的同时,将Bayesian方法的计算量减少到原来的1/14.水池实验结果验证了ACO-Bayesian方法的正确性和有效性,为其工程应用奠定了基础.
-
关键词:
- 阵列信号处理 /
- Bayesian方位估计 /
- 蚁群优化 /
- 计算量 /
- 水池实验
Abstract: For the effectiveness of the ant colony optimization algorithm for solving high-dimensional nonlinear search problem, a Bayesian maximum posteriori direction of arrival (DOA) estimation fast algorithm based on the ant colony optimization algorithm (ACO-Bayesian) was proposed. This algorithm adopts Bayesian maximum posteriori probability function as the objective function of the ant colony algorithm, exploits a weighted sum of several one-dimensional Gaussian functions in the sampling process. The global maximum of Bayesian spatial spectrum function can be reached after reasonable iterations. Simulation results show that the proposed algorithm provides similar performance to that achieved by Bayesian estimator, but its computational complexity cost is only 1/14 of original method. The water tank experiment results verified the correctness and validity of the proposed ACO-Bayesian method, which promote them to promising in engineering applications. -
[1] 冯西安.水下目标高分辨方位估计技术研究[D].西安:西北工业大学,2004.Feng X A.Study on the high resolution DOA estimation techniques of underwater targets[D].Xi'an:Northwestern Polytechnical University,2004(in Chinese). [2] Tadaion A A,Derakhtian M,Gazor S,et al.A fast multiple-source detection and localization array signal processing algorithm using the spatial filtering and ML approach[J].IEEE Transactions on Signal Processing,2007,55(5):1815-1827. [3] Chen C E,Lorenzelli F,Hudson R E,et al.Stochastic maximum-likelihood DOA estimation in the presence of unknown nonuniform noise[J].IEEE Transactions on Signal Processing,2008,56(7):3038-3044. [4] Vorobyov S A,Gershman A B,Wong K M.Maximum likelihood direction-of-arrival estimation in unknown noise fields using sparse sensor arrays[J].IEEE Transactions on Signal Processing,2005,53(1):34-43. [5] Huang J G,Chen J F,Liu C M,et al.Bayesian approach to high resolution direction-of-arrival estimation[C]//Proceeding of the Fourth International Conference on Signal Processing.Piscataway,NJ:IEEE,1998:377-380. [6] Li X,Huang J G.Bayesian high resolution DOA estimator based on importance sampling[C]//Proceeding of Oceans 2005-Europe.Brest,France:Institute of Electrical and Electronics Engineers Computer Society,2005:611-615. [7] Djuric P M,Li H T.Bayesian spectrum estimation of harmonic signals[J].IEEE Signal Processing Letters,1995,2(11):213-215. [8] Viberg M,Swindlehurst A L.A Bayesian approach to auto-calibration for parametric array signal processing[J].IEEE Transactions on Signal Processing,1994,42(12):3495-3507. [9] Dorigo M.Optimization,learning and natural algorithms[D].Italy:Dipartimento di Elettronica,Politecnico di Milano,1992. [10] Socha K,Dorigo M.Ant colony optimization for continuous domains[J].European Journal of Operational Research,2008,185(3):1155-1173. [11] Dorigo M,Gambardella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,1(1):53-66. [12] Costa D,Hertz A.Ants can colour graphs[J].Journal of the Operational Research Society,1997,48(3):295-305. [13] Gagne C,Price W L,Gravel M.Comparing an ACO algorithm with other heuristics for the single machine scheduling problem with sequence-dependent setup times[J].Journal of the Operational Research Society,2002,53:895-906. [14] Corne D,Dorigo M,Glover F.New ideas in optimization[M].London,UK:McGraw-Hill,1999:63-76. [15] 焦亚萌,黄建国,韩晶.基于连续蚁群优化算法的小快拍加权子空间拟合快速算法[J].电子与信息学报,2011,33(4):972-976.Jiao Y M,Huang J G,Han J.Continuous ant colony optimization based weighted subspace fitting fast algorithm for DOA estimation with few snapshots[J].Journal of Electronics & Information Technology,2011,33(4):972-976(in Chinese)
点击查看大图
计量
- 文章访问数: 1085
- HTML全文浏览量: 177
- PDF下载量: 669
- 被引次数: 0