## 留言板

UKF参数估计在三体Lambert问题中的应用

 引用本文: 张洪礼, 罗钦钦, 韩潮等 . UKF参数估计在三体Lambert问题中的应用[J]. 北京航空航天大学学报, 2015, 41(2): 228-233.
ZHANG Hongli, LUO Qinqin, HAN Chaoet al. Application of UKF parameter estimation in the three-body Lambert problem[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2): 228-233. doi: 10.13700/j.bh.1001-5965.2014.0120(in Chinese)
 Citation: ZHANG Hongli, LUO Qinqin, HAN Chaoet al. Application of UKF parameter estimation in the three-body Lambert problem[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2): 228-233. (in Chinese)

## UKF参数估计在三体Lambert问题中的应用

##### doi: 10.13700/j.bh.1001-5965.2014.0120

###### 通讯作者: 韩潮(1960—), 男, 北京人, 教授, hanchao@buaa.edu.cn, 主要研究方向为航天器动力学与控制、航天器导航、制导与控制、航天系统动力学仿真等.
• 中图分类号: V412.4

## Application of UKF parameter estimation in the three-body Lambert problem

• 摘要: 为了快速精确地求解三体Lambert问题,提出了一种新的基于无损卡尔曼滤波(UKF)参数估计的数值求解算法,该算法由初值猜测和精确解求解两部分组成.首先,基于地月系统二体模型,通过简单迭代求解三体Lambert问题的初值.然后,将三体Lambert问题对应的两点边值问题转化为参数估计问题,通过UKF滤波算法求解,可得到收敛的精确解.该算法是基于概率估计理论的,不仅避免了传统数值方法推导相关梯度矩阵的复杂性,而且降低了三体Lambert问题对初值精确度的要求,从而显著降低了三体Lambert问题求解的难度.数值仿真表明,该方法求解效率较高,具有良好的鲁棒性,与微分修正算法、二阶微分修正算法对比具有更大的收敛域.

•  [1] Bate R, Mueller D,White J.Fundamentals of astrodynamics[M].New York:Dover Publications,1971:177-275. [2] Battin R H, Vaughan R M.An elegant Lambert algorithm[J].Journal of Guidance,Control and Dynamics,1984,7(6):662-670. [3] Gooding R H. A procedure for the solution of Lambert's orbital boundary-value problem[J].Celestial Mechanics & Dynamical Astronomy,1990,48(2):145-165. [4] D'Amarion L, Byrnes D,Sackett L.Optimization of multiple flyby trajectories[C]//AAS/AIAA Astrodynamics Specialists Conference.Provincetown:AIAA Paper 1979:79-162. [5] Armellin R, Di Lizia P,Topputo F,et al.Gravity assist space pruning based on differential algebra[J].Celestial Mechanics and Dynamical Astronomy,2010,106(1):1-24. [6] Jesicak M, Ocampo C.Automated generation of symmetric lunar free-return trajectories[J].Journal of Guidance,Control and Dynamics,2011,34(1):98-106. [7] Luo Q, Yin J,Han C.Design of earth-moon free-return trajectories[J].Journal of Guidance,Control,and Dynamics,2012,36(1): 263-271. [8] Okutsu M, Longuski J.Mars free returns via gravity assist from Venus[J].Journal of Spacecraft and Rockets,2002,39(1):31-36. [9] Prado A F B A. Traveling between the Lagrangian points and the Earth[J].Acta Astronautica,1996,39(7):483-486. [10] Lian Y J, Jiang X Y,Tang G J.Halo-to-halo cost optimal transfer based on CMA-ES[C]//Proceedings of the 32nd Chinese Control Conference,CCC 2013.Piscataway,NJ:IEEE,2013:2468-2473. [11] Zazzera F B, Topputo F,Massari M.Assessment of mission design including utilization of libration points and weak stability boundaries, 18147/04/NL/mv[R].Frascati,Italy:ESA,2003. [12] Byrnes D V. Application of the pseudostate theory to the three-body Lambert problem[J].Journal of the Astronautical Sciences,1989,37:221-232. [13] Sukhanov A, Prado A F B A.Lambert problem solution in the Hill model of motion[J].Celestial Mechanics & Dynamical Astronomy,2004,90(3):331-354. [14] 罗钦钦,韩潮. 包含引力辅助变轨的三体Lambert问题求解算法[J].北京航空航天大学学报,2013,39(5):679-687. Luo Q Q,Han C.Solution algorithm of the three-body Lambert problem with gravity assist maneuver[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(5):679-687(in Chinese). [15] Haykin S. Kalman filtering and neural networks[M].New York:John Wiley & Sons Inc,2002.

##### 计量
• 文章访问数:  964
• HTML全文浏览量:  19
• PDF下载量:  890
• 被引次数: 0
##### 出版历程
• 收稿日期:  2014-03-12
• 刊出日期:  2015-02-20

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈

常见问答