留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矩的显式积分算法研究与应用

付子豪 龚光红

付子豪, 龚光红. 矩的显式积分算法研究与应用[J]. 北京航空航天大学学报, 2015, 41(4): 727-731. doi: 10.13700/j.bh.1001-5965.2014.0266
引用本文: 付子豪, 龚光红. 矩的显式积分算法研究与应用[J]. 北京航空航天大学学报, 2015, 41(4): 727-731. doi: 10.13700/j.bh.1001-5965.2014.0266
FU Zihao, GONG Guanghong. Explicit moment integration algorithm and its application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 727-731. doi: 10.13700/j.bh.1001-5965.2014.0266(in Chinese)
Citation: FU Zihao, GONG Guanghong. Explicit moment integration algorithm and its application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 727-731. doi: 10.13700/j.bh.1001-5965.2014.0266(in Chinese)

矩的显式积分算法研究与应用

doi: 10.13700/j.bh.1001-5965.2014.0266
详细信息
    作者简介:

    付子豪(1990—),男,四川德阳人,硕士生,fuzihaofzh@gmail.com

    通讯作者:

    龚光红(1968—),女,四川石柱人,教授,ggh@buaa.edu.cn,主要研究方向为分布仿真与虚拟技术.

  • 中图分类号: TP301.6

Explicit moment integration algorithm and its application

  • 摘要: 矩的求解通常被用于求解有限元、体积、惯性矩等问题中.基于矩的叠加性,首先给出了在三维空间中计算域的离散方式,并推导了矩的显式积分公式,随后将其推广到n维空间中,该表达式易于在计算机上实现;设计了矩的并行计算算法,并通过Fortran和Python混编的方式,实现了矩的并行计算;对多重精度下的样例数据给出了一个算例,实现了零阶矩和二阶矩的计算,并和串行算法、逐次降维算法作出比较,进行了效率分析和误差分析.结果显示,矩的显式积分并行计算算法易于程序实现,并且在效率上高于串行算法,能够很容易推广到高维空间,该算法具有高度可并行性,误差主要来自计算域离散.

     

  • [1] Johnson F T, Samant S S,Bieterman M B,et al.TRANAIR-a computer code for transonic analyses of arbitrary configurations,NASA-CR-4348[R].Washington,D.C.:NASA,1987.
    [2] 洪国雄. 惯性张量的物理意义[J].大学物理,1989,12(1):7-8. Hong G X.The physical meaning of the inertia tensor[J].College Physics,1989,12(1):7-8(in Chinese).
    [3] 秦莉,杨明, 郭庆.遗传算法在质量矩导弹姿态控制中的应用[J].北京航空航天大学学报,2007,33(7):769-772. Qin L,Yang M,Guo Q.Movingmass attitude control law based on genetic algerithm[J].Journal of Beijing University of Aeronautics and Astronautics,2007,33(7):769-772(in Chinese).
    [4] 徐水源. 惯性矩与惯性张量的关系[J].黄石教育学院学报,2005,22(4):90-92. Xu S Y.The relationship of the moment of inertia and inertia tensor[J].Journal of Huangshi Education College,2005,22(4):90-92(in Chinese).
    [5] Soerjadi R. On the computation of the moments of a polygon,with some applications[M].Netherlands:Stevin Laboratory,1968:43-58.
    [6] Mirtich B. Fast and accurate computation of polyhedral mass properties[J].Journal of Graphics Tools,1996,1(2):31-50.
    [7] Sheynin S, Tuzikov A,Vasiliev P.Efficient computations of body moments[J].Информационные Процессы,2002,2(1):22- 23.
    [8] Sheynin S A, Tuzikov A V.Explicit formulae for polyhedra moments[J].Pattern Recognition Letters,2001,22(10):1103- 1109.
    [9] Tuzikov A V, Sheynin S A,Vasiliev P V.Computation of volume and surface body moments[J].Pattern Recognition,2003,36(11): 2521-2529.
    [10] Hall M. Combinatorial theory[M].New York:John Wiley & Sons,1998:166.
    [11] VanRossum G, Drake F L.Python language reference manual[M].United Kingdom:Network Theory,2003.
    [12] VanRossum G, Drake F L.The python language reference[M].Beaverton,OR,USA:Python Software Foundation,2010.
    [13] Chandra R. Parallel programming in OpenMP[M].San Francisco:Morgan Kaufmann,2001.
    [14] Dagum L, Menon R.OpenMP:an industry standard API for shared-memory programming[J].Computational Science & Engineering,IEEE,1998,5(1):46-55.
    [15] Fredericks W J, Antcliff K R,Costa G,et al.Aircraft conceptual design using vehicle sketch pad[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.Reston:American Institute of Aeronautics and Astronautics Inc,2010:1-17.

  • 加载中
计量
  • 文章访问数:  1081
  • HTML全文浏览量:  79
  • PDF下载量:  733
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-13
  • 修回日期:  2014-08-25
  • 网络出版日期:  2015-04-20

目录

    /

    返回文章
    返回
    常见问答