Interference characteristics analysis of optical fiber Fabry-Perot cavity with graphene diaphragm
-
摘要: 针对以新型材料石墨烯为膜片的光纤法珀压力传感器,应用圆薄膜大挠度弹性理论,利用有限元法分析了均布载荷下石墨烯膜的挠度形变;并基于Fabry-Perot干涉仪原理,建立了光纤Fabry-Perot腔压力传感的数学模型.根据石墨烯膜折射率特性,分析了层数、入射光角度等参数对石墨烯膜反射率的影响,获取了腔长损耗以及薄膜挠度形变导致腔长变化而引起的干涉光谱变化规律.仿真结果表明,增加薄膜层数可提高反射率、改善干涉性能;但随着载荷增加,其对挠度形变的影响表现为反向递减效应.8层石墨烯薄膜可获得0.715%的反射率,且当腔长为40μm时,直径25μm薄膜的理论压力灵敏度约为10nm/kPa.这为基于多层石墨烯的膜片式光纤压力传感器的设计提供了理论依据.
-
关键词:
- 光纤Fabry-Perot腔 /
- 石墨烯膜 /
- 大挠度 /
- 干涉特性 /
- 压力传感器
Abstract: With regard to the design of optical fiber Fabry-Perot cavity using graphene as sensitive diaphragm, the deflection change under uniformly distributed loads in graphene film was analyzed by finite element method based on the large deflection elastic theory of circular film. The pressure-sensing mathematical model of optical fiber Fabry-Perot cavity with graphene diaphragm was established based on the working principle of Fabry-Perot interferometer. The effects of graphene film layer and incident light angle on the film reflectivity were obtained according to the refractive index characteristics of the film. Then the interference spectra change, caused by both the cavity length losses and the film deflection deformations under the pressure loads, were analyzed. The simulation results show that adding the film layer can increase the film reflectivity and further improve the optical interference performance; however, a decreasing effect on the deflection deformation is caused by the film layer with the increase of pressure load. Thus, an 8 layer graphene film can achieve a reflectivity of 0.715% and an approximate theoretical sensitivity of 10nm/kPa for a 40μm Fabry-Perot cavity length with a membrane diameter of 25μm. It provides a theoretical basis for the design and fabrication of high-sensitivity fiber-tip pressure sensor with multiple-layer graphene diaphragm. -
[1] Novoselov K S, Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669. [2] Liang X, Sperling B A,Calizo I,et al.Toward clean and crackless transfer of graphene[J].ACS Nano,2011,5(11):9144-9153. [3] Lee C, Wei X D,Kysar J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388. [4] Nair R R, Blake P,Grigorenko A N,et al.Fine structure constant defines visual transparency of graphene[J].Science,2008,320(5881):1308. [5] 袁小亚. 石墨烯的制备研究进展[J].无机材料学报,2011,26(6):561-570. Yuan X Y.Progress in preparation of graphene[J].Journal of Inorganic Materials,2011,26(6):561-570(in Chinese). [6] Martins L G P, Song Y,Zeng T,et al.Direct transfer of graphene onto flexible substrates[J].Proceedings of the National Academy of Sciences,2013,110(44): 17762-17767. [7] Bunch J S, Verbridge S S,Alden J S,et al.Impermeable atomic membranes from graphene sheets[J].Nano Letters,2008,8(8):2458-2462. [8] Smith A D, Vazirs S,Delin A,et al.Strain engineering in suspended graphene devices for pressure sensor application[C]//Proceedings of the 13th International Conference on Ultimate Integration on Silicon.Grenoble,France:IEEE,2012:21-24. [9] Kwon O K, Lee J H,Kim K S,et al.Developing ultrasensitive pressure sensor based on graphene nanoribbon:molecular dynamics simulation[J].Physica E:Low-Dimensional Systems and Nanostructures,2013,47:6-11. [10] Ma J,Jin W, Ho H L,et al.High-sensitivity fiber-tip pressure sensor with graphene diaphragm[J]. Optics Letters,2012,37(13): 2493-2495. [11] Ma J, Xuan H F,Ho H L,et al.Fiber-optic Fabry-Perot acoustic sensor with multilayer graphene diaphragm[J].IEEE Photonics Technology Letters,2013,25(10):932-935. [12] Beams J W. The structure and properties of thin film[M].New York:John Wiley and Sons,1959:183-190. [13] Zhou X, Yu Q.Wide-range displacement sensor based on fiber-optic Fabry-Perot interferometer for subnanometer measurement[J].IEEE Sensors Journal,2011,11(7):1602-1606. [14] 唐晋发,顾培夫. 薄膜光学与技术[M].北京:机械工业出版社,1989:5-24. Tang J F,Gu P F.Thin film optics and technology[M].Beijing:China Machine Press,1989:5-24(in Chinese). [15] Nelson F J, Kamineni V K,Zhang T,et al.Optical properties of large-area polycrystalline chemical vapor deposited graphene by spectroscopic ellipsometry[J].Applied Physics Letters,2010,97(25):253110. [16] Ma C, Dong B,Gong J,et al.Decoding the spectra of low-finesse extrinsic optical fiber Fabry-Perot interferometers[J].Optics Express,2011,19(24):23727-23742.
点击查看大图
计量
- 文章访问数: 1374
- HTML全文浏览量: 90
- PDF下载量: 689
- 被引次数: 0