Adaptive backstepping control of a nonlinear aeroelastic system
-
摘要: 针对双自由度二元机翼,利用准定常气动力建立了非线性气动弹性方程,并以状态空间形式描述.双控制面非线性气动弹性系统中前后缘控制量相互耦合,不能直接应用反演自适应控制方法,为了解决这一问题,新定义了两个等效控制器.考虑俯仰方向立方非线性参数未知,根据Lyapunov稳定性理论设计了反演自适应控制律.通过Runge-Kutta数值方法对气动弹性方程进行求解,验证了控制律的有效性.仿真结果表明:所设计的控制器能够使开环不稳定的气动弹性系统稳定至零点,双控制面的作用提高了颤振临界速度.考虑到实际控制面的偏转限制,研究了单控制面失效问题,结果显示单后缘控制面比单前缘控制面对系统控制更有效.
-
关键词:
- 二元机翼 /
- 非线性气动弹性 /
- 颤振 /
- Lyapunov稳定性理论 /
- 反演自适应控制
Abstract: For a two-dimensional airfoil with leading-edge and trailing-edge control surfaces, the nonlinear aeroelastic equations under the supposition of quasi-steady aerodynamic forces were established and were described in state space form. The control variables of the leading and trailing edges were coupled resulting that the backstepping control method could not be used directly. To solve the problem, two equivalent control laws were newly defined. Supposing that the system has parametric uncertainty in the cubic nonlinearity in pitch, an adaptive control law was designed based on Lyapunov stability theory. In order to verify the validation of the control law, the dynamic equations were solved numerically by using Runge-Kutta method. The simulation results show that the open-loop aeroelastic system is unstable with limit cycle oscillation, while the close-loop system reaches to stable as a result of the adaptive control law. With double control surfaces, the flutter critical velocity is improved after the control design. Taking the limits of the control surface deflection in reality into account, the invalidation problems of the single control surface are discussed. Just considering the effectiveness of the single control surface, the system using the trailing edge control surface is better than that of using the leading edge control surface. -
[1] 赵永辉, 胡海岩.具有操纵间隙非线性二维翼段的气动弹性分析[J].航空学报, 2003, 24(6):521-525. Zhao Y H, Hu H Y.Aeroelastic analysis of a two dimensional airfoil with control surface freeplay nonlinearity[J].Acta Aeronautica et Astronautica Sinica, 2003, 24(6):521-525(in Chinese). [2] Mukho P V.Historical perspective on analysis and control of aeroelastic responses[J].Journal of Guidance, Control and Dynamics, 2003, 26(5):673-684. [3] Behal A, Marzocca P, Rao V M, et al.Nonlinear adaptive control of an aeroelastic two-dimensional lifting surface[J].Journal of Guidance, Control, and Dynamics, 2006, 29(2):382-390. [4] Lin C M, Chin W L.Adaptive decoupled fuzzy sliding-mode control of a nonlinear aeroelastic system[J].Journal of Guidance, Control, and Dynamics, 2006, 29(1):206-209. [5] Platanitis G, Strganac T W.Control of a nonlinear wing section using leading-and trailing-edge surfaces[J].Journal of Guidance, Control, and Dynamics, 2004, 27(1):52-58. [6] 李道春, 向锦武.迟滞非线性二元机翼颤振特性分析[J].航空学报, 2007, 28(3):600-604. Li D C, Xiang J W.Aeroelastic analysis of two-dimensional airfoil with hysteresis structural nonlinearity[J].Acta Aeronautica et Astronautica Sinica, 2007, 28(3):600-604(in Chinese). [7] 李道春, 向锦武.间隙非线性气动弹性颤振控制[J].北京航空航天大学学报, 2007, 33(6):640-643. Li D C, Xiang J W.Flutter control of aeroelasticity with freeplay nonlinearity[J].Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(6):640-643(in Chinese). [8] Kurdila A J, Akella M R.Nonlinear control methods for high-energy limit-cycle oscillations[J].Journal of Guidance, Control, and Dynamics, 2001, 24(1):185-192. [9] Ali I, Radice G, Kim J.Backstepping control design with actuator torque bound for spacecraft attitude maneuver[J].Journal of Guidance, Control, and Dynamics, 2010, 33(1):254-259. [10] Kristiansen R, Nicklasson P J, Gravdahl J T.Satellite attitude control by quaternion-based backstepping[J].IEEE Transactions on Control Systems Technology, 2009, 17(1):227-232. [11] 董文瀚, 孙秀霞, 林岩.反推自适应控制的发展及应用[J].控制与决策, 2006, 21(10):1081-1084. Dong W H, Sun X X, Lin Y.Adaptive backstepping control:Development and applications[J].Control and Decision, 2006, 21(10):1081-1084(in Chinese). [12] 杨绍普, 曹庆杰, 张伟.非线性动力学与控制的若干理论及应用[M].北京:科学出版社, 2011:304-309. Yang S P, Cao Q J, Zhang W.Nonlinear dynamics and control:Theory and application[M].Beijing:Science Press, 2011:304-309(in Chinese). [13] Ola H, Torkel G.Vector backstepping design for flight control[C]//Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibit.Reston:AIAA, 2007, 2:1107-1116. [14] 涂再云, 陆阿坤, 杜军, 等.高超声速飞行器动态神经网络反推自适应控制[J].航天控制, 2013, 31(4):78. Tu Z Y, Lu A K, Du J, et al.Dynamic neural network adaptive backstepping control for hypersonic aircraft[J].Aerospace Control, 2013, 31(4):78(in Chinese). [15] 董文瀚, 孙秀霞, 林岩.超机动飞行的非线性反推自适应控制[J].飞行力学, 2007, 25(2):39. Dong W H, Sun X X, Lin Y.Nonlinear backstepping adaptive control of supermanuverable flight[J].Flight Dynamics, 2007, 25(2):39(in Chinese). [16] Chen C L, Peng C C, Yau H T.High-order sliding mode controller with backstepping design for aeroelastic systems[J].Communications in Nonlinear Science and Numerical Simulation, 2012, 17(4):1813-1823. [17] Ran M P, Wang Q, Hou D L, et al.Backstepping design of missile guidance and control based on adaptive fuzzy sliding mode control[J].Chinese Journal of Aeronautics, 2014, 27(3):634-642. [18] Li M D, Jing W X, Macdonald M, et al.Adaptive backstepping control for optimal descent with embedded autonomy[J].Aerospace Science and Technology, 2011, 15(7):589-594. [19] Wu X Q, Lu J A.Adaptive control of uncertain Lü system[J].Chaos, Solitons and Fractals, 2004, 22(2):375-381. [20] Gao S S, Zhong Y M, Li W.Robust adaptive control for a class of chaotic system using backstepping[J].Aerospace Science and Technology, 2011, 15(6):425-430. [21] Peng C C, Chen C L.Robust chaotic control of Lorenz system by backstepping design[J].Chaos, Solitons and Fractals, 2008, 37(2):598-608. [22] Ha C S, Zuo Z Y, Choi F B, et al.Passivity-based adaptive backstepping control of quadrotor-type UAVs[J].Robotics and Autonomous Systems, 2014, 62(9):1305-1315. [23] 李道春, 向锦武.非线性气动弹性模型参考自适应控制[J].航空学报, 2008, 29(2):280-283. Li D C, Xiang J W.Model reference adaptive control of nonlinearity aeroelasticity[J].Acta Aeronautica et Astronautica Sinica, 2008, 29(2):280-283(in Chinese).
点击查看大图
计量
- 文章访问数: 1045
- HTML全文浏览量: 54
- PDF下载量: 519
- 被引次数: 0