留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于降维算法和Edgeworth级数的结构可靠性分析

孟广伟 冯昕宇 李锋 周立明

孟广伟, 冯昕宇, 李锋, 等 . 基于降维算法和Edgeworth级数的结构可靠性分析[J]. 北京航空航天大学学报, 2016, 42(3): 421-425. doi: 10.13700/j.bh.1001-5965.2015.0181
引用本文: 孟广伟, 冯昕宇, 李锋, 等 . 基于降维算法和Edgeworth级数的结构可靠性分析[J]. 北京航空航天大学学报, 2016, 42(3): 421-425. doi: 10.13700/j.bh.1001-5965.2015.0181
MENG Guangwei, FENG Xinyu, LI Feng, et al. Structural reliability analysis based on dimensionality reduction and Edgeworth series[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(3): 421-425. doi: 10.13700/j.bh.1001-5965.2015.0181(in Chinese)
Citation: MENG Guangwei, FENG Xinyu, LI Feng, et al. Structural reliability analysis based on dimensionality reduction and Edgeworth series[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(3): 421-425. doi: 10.13700/j.bh.1001-5965.2015.0181(in Chinese)

基于降维算法和Edgeworth级数的结构可靠性分析

doi: 10.13700/j.bh.1001-5965.2015.0181
基金项目: 吉林省科技厅基金(201205001,201215048);国家重大科学仪器设备开发专项(2012YQ030075)
详细信息
    作者简介:

    孟广伟 男,博士,教授,博士生导师。主要研究方向:疲劳与断裂,结构可靠性。Tel.:0431-85095834 E-mail:mgw@jlu.edu.cn;冯昕宇 女,博士研究生。主要研究方向:结构可靠性。Tel.:0431-85095834 E-mail:fxy120884766@163.com;李锋 男,博士,副教授。主要研究方向:疲劳与断裂。Tel.:0431-85095834 E-mail:fengli@jlu.edu.cn

    通讯作者:

    李锋,Tel.:0431-85095843 E-mail:fengli@jlu.edu.cn

  • 中图分类号: TB114.3

Structural reliability analysis based on dimensionality reduction and Edgeworth series

Funds: Foundation of Jilin Provincial Science & Technology Department (201205001, 201215048);National Key Scientific Instrument and Equipment Development Projects of China (2012YQ030075)
  • 摘要: 针对工程实际中存在功能函数为隐式或高维非线性的复杂结构,本文提出了一种基于降维算法和Edgeworth级数的可靠性分析方法。利用降维算法将n维函数展开为n个一维函数,经变量转换后变量都相互独立且服从均值为0、方差为0.5的正态分布,再结合Gauss-Hermite积分方法计算出一维函数的原点矩,从而得到结构功能函数的中心矩,将所得的矩信息应用到Edgeworth级数展开式中,给出功能函数的累积分布函数表达式,计算得到结构的失效概率。该方法避免了功能函数对变量梯度的要求,仅需少量的确定性重分析计算。数值算例结果表明了本方法的有效性和正确性。

     

  • [1] 马小兵,任宏道, 蔡义坤.高温结构可靠性分析的时变响应面法[J].北京航空航天大学学报,2015,41(2):198-202. MA X B,REN H D,CAI Y K.Time-varying response surface method for high-temperature structural reliability analysis[J].Journal of Beijing University of Aeronautics and Astronautics,2015,41(2):198-202(in Chinese).
    [2] 许孟辉,邱志平. 结构模糊非概率混合可靠性分析方法[J].北京航空航天大学学报,2014,40(2):222-228. XU M H,QIU Z P.Reliability analysis of structures with fuzzy and non-probabilistic hybrid variables[J].Journal of Beijing University of Aeronautics and Astronautics,2014,40(2):222-228(in Chinese).
    [3] MOJSILOVI N, STEWART M G.Probability and structural reliability assessment of mortar joint thickness in load-bearing masonry walls[J].Structural Safety,2015,52:209-218.
    [4] HUANG X Y, ALIABADI M H.A boundary element method for structural reliability[J].Key Engineering Materials,2015,627:453-456.
    [5] LOW B K, PHOON K K.Reliability-based design and its complementary role to Eurocode 7 design approach[J].Computers and Geotechnics,2015,65:30-44.
    [6] CHOI M J, CHO H,CHOI K K,et al.Sampling-based RBDO of ship hull structures considering thermo-elasto-plastic residual deformation[J].Mechanics Based Design of Structures and Machines,2015,43(2):183-208.
    [7] SHI X, TEIXEIRA A P,ZHANG J,et al.Structural reliability analysis based on probabilistic response modelling using the maximum entropy method[J].Engineering Structures,2014,70:106-116.
    [8] RAHMAN S, XU H.A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics[J].Probabilistic Engineering Mechanics,2004,19(4):393-408.
    [9] CHO H, BAE S,CHOI K K,et al.An efficient variable screening method for effective surrogate models for reliability-based design optimization[J].Structural and Multidisciplinary Optimization,2014:50(5):717-738.
    [10] YOUN B D, XI Z,WANG P.Eigenvector dimension reduction(EDR)method for sensitivity-free probability analysis[J].Structural and Multidisciplinary Optimization,2008,37(1):13-28.
    [11] KONG C, SUN Z,NIU X,et al.Moment methods for C/SiC woven composite components reliability and sensitivity analysis[J].Science and Engineering of Composite Materials,2014,21(1):121-128.
    [12] LI G,ZHANG K. A combined reliability analysis approach with dimension reduction method and maximum entropy method[J] Structural and Multidisciplinary Optimization,2011,43(1):121-143.
    [13] ZHANG X F, PANDEY M D,ZHANG Y M.A numerical method for structural uncertainty response computation[J].Science China Technological Sciences,2011,54(12):3347-3357.
    [14] ANDREEV A, KANTOO A,MALO P.Computational examples of a new method for distribution selection in the Pearson system[J].Journal of Applied Statistics,2007,34(4):487-506.
    [15] SU G,YU B, XIAO Y,et al.Gaussian process machine-learning method for structural reliability analysis[J].Advances in Structural Engineering,2014,17(9):1257-1270.
  • 加载中
计量
  • 文章访问数:  1276
  • HTML全文浏览量:  217
  • PDF下载量:  599
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-30
  • 网络出版日期:  2016-03-20

目录

    /

    返回文章
    返回
    常见问答