留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于优化字典学习算法的压缩数据收集

易可夫 王东豪 万江文

易可夫, 王东豪, 万江文等 . 基于优化字典学习算法的压缩数据收集[J]. 北京航空航天大学学报, 2016, 42(6): 1203-1209. doi: 10.13700/j.bh.1001-5965.2015.0375
引用本文: 易可夫, 王东豪, 万江文等 . 基于优化字典学习算法的压缩数据收集[J]. 北京航空航天大学学报, 2016, 42(6): 1203-1209. doi: 10.13700/j.bh.1001-5965.2015.0375
YI Kefu, WANG Donghao, WAN Jiangwenet al. Optimized dictionary learning algorithm for compressive data gathering[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6): 1203-1209. doi: 10.13700/j.bh.1001-5965.2015.0375(in Chinese)
Citation: YI Kefu, WANG Donghao, WAN Jiangwenet al. Optimized dictionary learning algorithm for compressive data gathering[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6): 1203-1209. doi: 10.13700/j.bh.1001-5965.2015.0375(in Chinese)

基于优化字典学习算法的压缩数据收集

doi: 10.13700/j.bh.1001-5965.2015.0375
基金项目: 国家自然科学基金(61371135)
详细信息
    作者简介:

    易可夫 男,博士研究生。主要研究方向:无线传感器网络。E-mail:corfyi@163.com;万江文 男,博士,教授,博士生导师。主要研究方向:无线传感器网络。Tel.:010-82339889 E-mail:jwwan@buaa.edu.cn

    通讯作者:

    万江文,Tel.:010-82339889 E-mail:jwwan@buaa.edu.cn

  • 中图分类号: TP393

Optimized dictionary learning algorithm for compressive data gathering

  • 摘要: 为了提高压缩数据收集对多样化传感数据的适应能力,同时抑制环境噪声对数据收集精度的影响,提出了一种优化字典学习算法来构造压缩数据收集中的稀疏字典。理论分析表明在压缩数据收集中由环境噪声导致的数据收集误差和稀疏字典的自相干程度正相关。为此在字典学习的过程中引入了自相干惩罚项来抑制环境噪声对数据收集精度的影响。该惩罚项还能减少字典学习过程中对训练数据的过拟合,从而进一步提高了该算法的稀疏表示能力。实验表明,该算法的稀疏表示能力高于同类字典学习算法,而且能有效地抑制环境噪声对压缩数据收集精度的影响。

     

  • [1] RAJAGOPALAN R,VARSHNEY P K.Data-aggregation techniques in sensor networks:A survey[J].IEEE Communications Surveys and Tutorials,2006,8(4):48-63.
    [2] CANDES E J,WAKIN M B.An introduction to compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):21-30.
    [3] DONOHO D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
    [4] BARANIUK R G.Compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
    [5] LUO C,WU F,SUN J,et al.Compressive data gathering for large-scale wireless sensor networks[C]//Proceedings of the 15th Annual International Conference on Mobile Computing and Networking.Washington,D.C.:ACM,2009:145-156.
    [6] LUO C,WU F,SUN J,et al.Efficient measurement generation and pervasive sparsity for compressive data gathering[J].IEEE Transactions on Wireless Communications,2010,9(12):3728-3738.
    [7] 陈正宇,杨庚,陈蕾,等.基于压缩感知的WSNs长生命周期数据收集方法[J].电子与信息学报,2014,36(10):2343-2349. CHEN Z Y,YANG G,CHEN L,et al.Data gathering for long network lifetime in WSNs based on compressed sensing[J].Journal of Electronics & Information Technology,2014,36(10):2343-2349.
    [8] WU X P,WANG Q S,LIU M Y.In-situ soil moisture sensing:Measurement scheduling and estimation using sparse sampling[J].ACM Transactions on Sensor Networks,2015,11(2):26:1-26:29.
    [9] TANG Y,ZHANG B,JING T,et al.Robust compressive data gathering in wireless sensor networks[J].IEEE Transactions on Wireless Communications,2013,12(6):2754-2761.
    [10] AHARON M,ELAD M,BRUCKSTEIN A.K-SVD:An algorithm for designing overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322.
    [11] CANDES E,TAO T.The Dantzig selector: Statistical estimation when p is much larger than n[J].The Annals of Statistics,2007,35(6):2313-2351.
    [12] LI G,ZHU Z,YANG D,et al.On projection matrix optimization for compressive sensing systems[J].IEEE Transactions on Signal Processing,2013,61(11):2887-2898.
    [13] RAUHUT H,SCHNASS K,VANDERGHEYNST P.Compressed sensing and redundant dictionaries[J].IEEE Transactions on Information Theory,2008,54(5):2210-2219.
    [14] TROPP J A,GILBERT A C.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory,2007,53(12):4655-4666.
    [15] YI K,FENG R,YU N,et al.PARED:A testbed with parallel reprogramming and multi-channel debugging for WSNs[C]//IEEE Wireless Communications and Networking Conference,WCNC.Piscataway,NJ:IEEE Press,2013:4630-4635.
  • 加载中
计量
  • 文章访问数:  1200
  • HTML全文浏览量:  211
  • PDF下载量:  545
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-08
  • 网络出版日期:  2016-06-20

目录

    /

    返回文章
    返回
    常见问答