留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用广义扩展有限元计算界面裂纹应力强度因子

苏毅 王生楠 鲁龙坤

苏毅, 王生楠, 鲁龙坤等 . 用广义扩展有限元计算界面裂纹应力强度因子[J]. 北京航空航天大学学报, 2016, 42(6): 1162-1168. doi: 10.13700/j.bh.1001-5965.2015.0376
引用本文: 苏毅, 王生楠, 鲁龙坤等 . 用广义扩展有限元计算界面裂纹应力强度因子[J]. 北京航空航天大学学报, 2016, 42(6): 1162-1168. doi: 10.13700/j.bh.1001-5965.2015.0376
SU Yi, WANG Shengnan, LU Longkunet al. SIFs of interfacial crack using generalized extended finite element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6): 1162-1168. doi: 10.13700/j.bh.1001-5965.2015.0376(in Chinese)
Citation: SU Yi, WANG Shengnan, LU Longkunet al. SIFs of interfacial crack using generalized extended finite element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6): 1162-1168. doi: 10.13700/j.bh.1001-5965.2015.0376(in Chinese)

用广义扩展有限元计算界面裂纹应力强度因子

doi: 10.13700/j.bh.1001-5965.2015.0376
基金项目: 航空科学基金(2010ZF56016)
详细信息
    作者简介:

    苏毅 女,博士研究生。主要研究方向:扩展有限元法、飞机结构疲劳断裂可靠性及损伤容限。E-mail:suxiaoyi12@126.com;王生楠 男,博士,教授,博士生导师。主要研究方向:飞机结构疲劳断裂可靠性及损伤容限、固体力学中新的计算策略和数值方法、计算机应用软件开发研制、飞机适航技术。E-mail:wangshna@nwpu.edu.cn

    通讯作者:

    王生楠,E-mail:wangshna@nwpu.edu.cn

  • 中图分类号: O346.1

SIFs of interfacial crack using generalized extended finite element method

  • 摘要: 广义扩展有限元法(GXFEM)是一种结合广义有限元法和扩展有限元法特点的新的数值模拟方法。给出了分析双材料界面裂纹应力强度因子(SIF)的广义扩展有限元法的基本原理。提出了一种新的双材料界面裂纹尖端富集函数,将裂纹尖端富集函数由12项缩减为6项。双材料界面不连续,在常规有限元法的位移模式中加入基于水平集的富集函数,同时将裂纹单元结点和裂纹尖端单元结点自由度广义化,提高了计算精度。通过与文献结果的比较,表明了提出方法的精确度和可靠度。

     

  • [1] MATSUMTO T,TANAKA M,OBARA R.Computation of stress intensity factors of interface cracks based on interaction energy release rates and BEM sensitivity analysis[J].Engineering Fracture Mechanics,2000,65(6):683-702.
    [2] LIU Z L,MENOUILLARD T,BELYTSCHKO T.An XFEM/spectral element method for dynamic crack propagation[J].International Journal of Fracture,2011,169(2):183-198.
    [3] CHENG K W,FRIES T P.Higher-order XFEM for cured strong and weak discontinuities[J].International Journal for Numerical Methods in Engineering,2010,82(5):564-590.
    [4] MOUSAVI S E,GRINSPUN E,SUKUMAR N.Higher-order extended finite elements with harmonic enrichment functions for complex crack problems[J].International Journal for Numerical Methods in Engineering,2011,86(4-5):560-574.
    [5] GRACIE R,WANG H W,BELYTSCHKO T.Blending in the extended finite element method by discontinuous Galerkin and assumed strain methods[J].International Journal for Numerical Methods in Engineering,2008,74(11):1645-1669.
    [6] MOTAMEDI D,MOHAMMADI S.Dynamic analysis of fixed cracks in composites by the extended finite element method[J].Engineering Fracture Mechanics,2010,77(17):3373-3393.
    [7] BELYTSCHKO T,BLACK T.Elastic crack growth in finite elements with minimal remeshing[J].International Journal for Numerical Methods in Enginering,1999,45(5):601-620.
    [8] MOËS N,DOLBOW J,BELYTSCHKO T.A finite element method for crack growth without remeshing[J].International Journal for Numerical Methods in Engineering,1999,46(1):131-150.
    [9] 章青,刘宽,夏晓舟,等.广义扩展有限元法及其在裂纹扩展分析中的应用[J].计算力学,2012,29(3):427-432. ZHANG Q,LIU K,XIA X Z,et al.Generalized extended finite element method and its application in crack growth analysis[J].Chinese Journal of Computational Mechanics,2012,29(3):427-432(in Chinese).
    [10] PATHAK H,SINGH A,SINGH I V.Numerical simulation of bi-material interfacial cracks using EFGM and XFEM[J].International Journal of Mechanics and Materials in Design,2012,8(1):9-36.
    [11] MOES N,CLOIREC M,CARTRAUD P,et al.A computation approach to handle complex micro-structure geometries[J].Computer Methods in Applied Mechanics and Engineering,2003,192(28): 3163-3178.
    [12] 江守燕,杜成斌.一种XFEM断裂分析的裂尖单元新型改进函数[J].力学学报,2013,45(1):134-138. JIANG S Y,DU C B.A novel enriched function of elements containing crack tip for fracture analysis XFEM[J].Chinese Journal of Theoretical and Applied Mechanics,2013,45(1):134-138(in Chinese).
    [13] SUKUMAR N,HUANG Z Y,PRÉVOST J H,et al.Partition of unity enrichment for bimaterial interface cracks[J].International Journal for Numerical Methods in Engineering,2004,59(8):1075-1102.
    [14] SUKUMAR N,CHOPP D L,MOES N,et al.Modeling holes and inclusions by level sets in the extended finite element method[J].Computer Methods in Applied Mechanics and Engineering,2001,190(46):6183-6200.
    [15] RICE J R.Elastic fracture mechanics concepts for interfacial cracks[J].Journal of Applied Mechanics,1988,55(1): 98-103.
  • 加载中
计量
  • 文章访问数:  915
  • HTML全文浏览量:  153
  • PDF下载量:  519
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-09
  • 网络出版日期:  2016-06-20

目录

    /

    返回文章
    返回
    常见问答