Diagnosis method of simultaneous fault with incomplete information
-
摘要: 在实际的装备故障诊断过程中,经常存在测试信息不完整的情况,而此时对并发故障进行诊断,则更为困难。针对这种情况,首先,对目前应用于不完备信息条件下的故障诊断方法以及并发故障诊断方法进行了分析。定义了不完备并发故障诊断决策系统对存在缺失的测试信息进行表述。提出了不完备边界粗糙熵对决策系统的不确定性进行度量,给出每条测试属性的重要度,同时给出了不完备信息条件下属性值频率的计算方法。然后,为了对并发故障进行诊断,在DSmT框架下构建了并发故障诊断模型,在此模型下提出一种融合证据特征的区间信度合成规则。最后,通过故障诊断实例,验证了方法的有效性和适用性。Abstract: Test information is often incomplete in the fault diagnosis process of equipment. And simultaneous fault diagnosis process is more difficult at the same time. In response to this situation, the current methods of fault diagnosis with incomplete test information and of simultaneous fault diagnosis are studied firstly. Then we define incomplete fault diagnosis decision system to describe incomplete test information. And it defines incomplete boundary rough entropy to measure the level of uncertainty in the system and assign the importance of each attribute. Meanwhile, the method to calculate frequency of attributes' value under incomplete condition is proposed. In order to diagnose simultaneous fault, the paper constructs the diagnosis model under DSmT framework,and proposes a new combination rule of interval-value belief to overcome the shortcomings of previous methods. Finally, the validity and applicability of the method are proved by two equipment fault diagnosis examples.
-
[1] KRYSZKIEWICZ M.Rough set approach to incomplete information systems[J].Information Sciences,1998,12(1-4):39-49. [2] 陈利安,肖明清,赵鑫.基于粗糙集与信息熵的不完备测试信息条件下故障诊断[J].振动与冲击,2012,31(22):24-28.CHEN L A, XIAO M Q, ZHAO X. Fault diagnosis under condition of incomplete test information based on rough set and information entropy[J]. Journal of Vibration and Shock, 2012, 31(22): 24-28(in Chinese). [3] 王珉,胡茑庆,秦国军.基于不完备信息的直升机传动系统故障诊断规则提取方法[J].振动与冲击,2011,30(12):185-190.WANG M,HU N Q,QIN G J.Method of rule extraction for fault diagnosis of a helicopter power train based on incomplete information[J].Journal of Vibration and Shock,2011,30(12): 185-190(in Chinese). [4] LU X,HUANG W,WANG W,et al.Multi-interpretations valued tolerance relation model of incomplete information in fault diagnosis system[C]//2014 11th World Congress on Intelligent Control and Automation(WCICA).Piscataway,NJ:IEEE Press,2014:6035-6040. [5] 杨召,肖明清,胡斌,等.测试信息不完备条件下航空电子装备故障诊断[J].计算机应用,2013,33(A01):46-47.YANG Z,XIAO M Q,HU B,et al.Fault diagnosis under condition of incomplete test information based on rough set and information entropy[J].Journal of Computer Applications,2013,33(A01):46-47(in Chinese). [6] 胡雷刚,肖明清,禹航,等.不完备信息条件下的航空发动机故障诊断方法[J].振动、测试与诊断,2012,32(6):903-908.HU L G,XIAO M Q,YU H,et al.Aero engine fault diagnosis method under incomplete information[J].Journal of Vibration,Measurement & Diagnosis,2012,32(6):903-908(in Chinese). [7] RONG Y,ZHAO J,WANG J,et al.Fault diagnosis of transformer based on incomplete information system rule extraction and Petri nets[J].Power System Protection and Control,2009,37(18):1-4. [8] 赵佰亭.混合决策系统的粗集模型及在转台故障诊断中的应用[D].哈尔滨:哈尔滨工业大学,2010:101-110.ZHAO B T.Rough set model of hybrid decision system and application in turntable fault diagnosis[D].Harbin:Harbin Institute of Technology,2010:101-110(in Chinese). [9] DONG H,LI X,WEI Z. Substation fault diagnosis based on rough sets and grey relational analysis[J].Telkomnika Indonesian Journal of Electrical Engineering,2014,12(2):1162-1168. [10] GAO Q,YIN C,DONG G.A novel fault diagnosis method for boiler drum water level based on rough sets and evidence theory[C]//2012 3rd International Conference onIntelligent Control and Information Processing(ICICIP).Piscataway,NJ:IEEE Press,2012:488-492. [11] WANG M,HU N,QIN G.A method for rule extraction based on granular computing:Application in the fault diagnosis of a helicopter transmission system[J].Journal of Intelligent & Robotic Systems,2013,71(3-4):445-455. [12] 彭俏,郭立峰,马杰.基于混合神经网络的核动力装置并发故障诊断研究[J].核动力工程,2013,33(6):30-34.PENG Q,GUO L F,MA J.Intercurrent fault diagnosis of nuclearpower plants based on hybrid artificial neural network[J].Nuclear Power Engineering,2013, 33(6):30-34(in Chinese). [13] VONG C M,WONG P K,IP W F,et al.Simultaneous-fault diagnosis of automotive engine ignition systems using prior domain knowledge and relevance vector machine[J].Mathematical Problems in Engineering,2013,2013:1-19. [14] CAI B,LIU Y,FAN Q,et al.Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network[J].Applied Energy,2014,114:1-9. [15] DEZERT J.Foundations for a new theory of plausible and paradoxical reasoning[J].Information and Security Journal,2002,9:13-57. [16] 李植良,徐晓滨,文成林.基于扩展证据理论的并发故障诊断方法[J].杭州电子科技大学学报,2009,28(6):107-110.LI Z L,XU X B,WEN C L.Simultaneous fault diagnosis method based on extended evidence theory[J].Journal of Hangzhou Dianzi University,2009,28(6):107-110(in Chinese). [17] 徐晓滨,文成林,蒋海娜,等.基于随机集理论的并发故障诊断信息融合方法[J].仪器仪表学报,2010,31(2):334-340.XU X B,WEN C L,JIANG H N,et al.Information fusion method of simultaneous fault diagnosis based on random set theory[J].Chinese Journal of Scientific Instrument,2010,31(2):334-340 (in Chinese). [18] 郭清,夏虹,韩文伟.DSmT 的主冷却剂泵并发故障融合方法分析[J].哈尔滨工业大学学报, 2014,46(9):111-115.GUO Q,XIA H,HAN W W.Concurrent fault information fusion methods of main cool ant pump based on DSmT[J].Journal of Harbin Institute of Technology,2014,46(9):111-115(in Chinese). [19] WU X,LIU Y,LIU Z,et al.Research on simultaneous faults diagnosis for nuclear power plant based on dezert-smarandache theory[C]//2013 21st International Conference on Nuclear Engineering.New York:ASME,2013:23-29. [20] REN J,JIANG B,ZHAO F,et al.Simultaneous fault diagnosis of the reactor coolant system based on the DSM evidence theory[C]//2013 21st International Conference on Nuclear Engineering.New York:ASME,2013:31-34. [21] SMARANDACHE F,DEZERT J.An introduction to DSm theory of plausible,paradoxist,uncertain,and imprecise reasoning for information fusion[J].Octogon Mathematical Magazine,2007,15(2):681-722. [22] DAI J,WANG W,TIAN H,et al.Attribute selection based on a new conditional entropy for incomplete decision systems[J].Knowledge-Based Systems,2013,39:207-213.
点击查看大图
计量
- 文章访问数: 1074
- HTML全文浏览量: 173
- PDF下载量: 500
- 被引次数: 0