Solution of output feedback μ controller based on LMI
-
摘要: D-K算法是结构奇异值(μ)方法的主要实现方式,存在着求解条件较苛刻、系统适用性差的问题,针对D-K算法应用的局限性,提出将线性矩阵不等式(LMI)用于D-K算法的改进,即通过Schur引理与有界实引理得到了结构奇异值上界的LMI判据,利用消元法得到了输出反馈的H∞控制器,在此基础上通过D-K迭代解出输出反馈μ控制器,避免了因求解Riccati方程受到求解条件的限制以及待定参数选择好坏的影响,增强了D-K算法对一般系统的适用性并提高了求解效率。数值结果表明,该方法得到的输出反馈系统的鲁棒稳定性及鲁棒性能均优于传统D-K算法。
-
关键词:
- 结构奇异值 /
- 线性矩阵不等式(LMI) /
- 输出反馈 /
- 控制器 /
- 鲁棒性能
Abstract: D-K iteration is the main implementation method of structured singular value (μ), which has problems of strict solution conditions and poor system suitability. Aimed at overcoming limitation shortage of D-K iteration application, the linear matrix inequality (LMI) was proposed to improve D-K iteration, which uses Schur's lemma and bounded real lemma to get LMI criterion of upper boundary of structured singular value, and elimination method was developed to obtain H∞ controller in output feedback system. Based on improvements related to LMI, D-K iteration was adopted to solve μ controller in output feedback system, which avoids solution limitation of Riccati equation and influence by selection quality of some uncertain parameters, enhances its applicability in general system, and improves the solution efficiency of controller in output feedback system. Numerical results show that this method gets not only robust stability but also robust performance superior to the traditional D-K iteration of output feedback system. -
[1] DOYLE J C.Analysis of feedback systems with structured uncertainties[J].IEE Proceedings D-Control Theory and Applications,1982,129(6):242-250. [2] SAFONOV M G.Stability margins of diagonally perturbed multivariable feedback systems[C]//IEEE Conference on Decision & Control Including the Symposium on Adaptive Processes.Piscataway,NJ:IEEE Press,1981:1472-1478. [3] FAN K H,TITS A L,DOYLE J C.Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics[J].IEEE Transaction on Automatic Control,1991,36(1):25-38. [4] BALAS G J,DOYLE J C,GLOVER K.Analysis and synthesis toolbox[M].Minneapolis:Musyn Incorporated and Mathworks Incorporated,1998. [5] COLLINS E G,SADHUKHAN D,WATSON L T.Robust controller synthesis via non-linear matrix inequalities[J].International Journal of Control,1999,72(11):971-980. [6] CHAMANBAZ M,DABBENCE F,TEMPO R,et al.A statistical learning theory approach for uncertain linear and bilinear matrix inequalities[J].Automatic,2014,50(6):1617-1625. [7] CHEN G,SUGIE T L.Analysis and synthesis of state feedback systems based on multipliers and LMI[C]//Proceedings of the American Control Conference.Piscataway,NJ:IEEE Press,1998:537-541. [8] FU R,HUANG L.Optimized LMI algorithm for L-analysis and synthesis with application in power system[J].Proceedings of the Chinese Society for Electrical Engineering,2002,22(10):7-11. [9] 俞立.鲁棒控制-线性矩阵不等式处理方法[M].北京:清华大学出版社,2002:88-120.YU L.Robust control-linear matrix inequalities approach[M].Beijing:Tsinghua University Press,2002:88-120(in Chinese). [10] 傅剑,杨卫东,李伯群,等.基于μ综合的热轧动态设定AGC鲁棒控制[J].北京科技大学学报,2006,28(3):293-298.FU J,YANG W D,LI B Q,et al.Robust control of hot rolling dynamic setting AGC based on μ synthesis[J].Chinese Journal of Engineering,2006,28(3):293-298(in Chinese). [11] WANG J L,YANG G H,LIU J.An LMI approach to H-index and mixed H-/H∞ fault detection observer design[J].Automatic,2007,43(9)1656-1665. [12] STEIN G,DOYLE J C.Beyond singular values and loop shapes[J].AIAA Journal of Guidance and Control,1991,14(1):5-16. [13] 郑大钟.线性系统理论[M].北京:清华大学出版社,1990:10.ZHENG D Z.Linear system theory[M].Beijing:Tsinghua University Press,1990:10(in Chinese). [14] SERRE D.Matrices:Theory and applications[M].New York:Springer,2002:6-7. [15] 何芝强.PID控制器参数整定方法及其应用研究[D].杭州:浙江大学,2005:35-38.HE Z Q.The PID controller parameter setting method and application research[D].Hangzhou:Zhejiang University,2005:35-38.
点击查看大图
计量
- 文章访问数: 901
- HTML全文浏览量: 44
- PDF下载量: 2366
- 被引次数: 0