留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LMI的输出反馈μ控制器求解

李喆 高元楼 李佩林

李喆, 高元楼, 李佩林等 . 基于LMI的输出反馈μ控制器求解[J]. 北京航空航天大学学报, 2016, 42(10): 2231-2237. doi: 10.13700/j.bh.1001-5965.2015.0556
引用本文: 李喆, 高元楼, 李佩林等 . 基于LMI的输出反馈μ控制器求解[J]. 北京航空航天大学学报, 2016, 42(10): 2231-2237. doi: 10.13700/j.bh.1001-5965.2015.0556
LI Zhe, GAO Yuanlou, LI Peilinet al. Solution of output feedback μ controller based on LMI[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10): 2231-2237. doi: 10.13700/j.bh.1001-5965.2015.0556(in Chinese)
Citation: LI Zhe, GAO Yuanlou, LI Peilinet al. Solution of output feedback μ controller based on LMI[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10): 2231-2237. doi: 10.13700/j.bh.1001-5965.2015.0556(in Chinese)

基于LMI的输出反馈μ控制器求解

doi: 10.13700/j.bh.1001-5965.2015.0556
详细信息
    作者简介:

    李喆,男,硕士研究生。主要研究方向:控制工程。Tel.:010-82339513,E-mail:dzztlz@163.com;高元楼,男,博士,副教授,硕士生导师。主要研究方向:机电控制。Tel.:010-82339757,E-mail:gaoyuanlou@263.net

    通讯作者:

    高元楼,Tel.:010-82339757,E-mail:gaoyuanlou@263.net

  • 中图分类号: TP131

Solution of output feedback μ controller based on LMI

  • 摘要: D-K算法是结构奇异值(μ)方法的主要实现方式,存在着求解条件较苛刻、系统适用性差的问题,针对D-K算法应用的局限性,提出将线性矩阵不等式(LMI)用于D-K算法的改进,即通过Schur引理与有界实引理得到了结构奇异值上界的LMI判据,利用消元法得到了输出反馈的H控制器,在此基础上通过D-K迭代解出输出反馈μ控制器,避免了因求解Riccati方程受到求解条件的限制以及待定参数选择好坏的影响,增强了D-K算法对一般系统的适用性并提高了求解效率。数值结果表明,该方法得到的输出反馈系统的鲁棒稳定性及鲁棒性能均优于传统D-K算法。

     

  • [1] DOYLE J C.Analysis of feedback systems with structured uncertainties[J].IEE Proceedings D-Control Theory and Applications,1982,129(6):242-250.
    [2] SAFONOV M G.Stability margins of diagonally perturbed multivariable feedback systems[C]//IEEE Conference on Decision & Control Including the Symposium on Adaptive Processes.Piscataway,NJ:IEEE Press,1981:1472-1478.
    [3] FAN K H,TITS A L,DOYLE J C.Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics[J].IEEE Transaction on Automatic Control,1991,36(1):25-38.
    [4] BALAS G J,DOYLE J C,GLOVER K.Analysis and synthesis toolbox[M].Minneapolis:Musyn Incorporated and Mathworks Incorporated,1998.
    [5] COLLINS E G,SADHUKHAN D,WATSON L T.Robust controller synthesis via non-linear matrix inequalities[J].International Journal of Control,1999,72(11):971-980.
    [6] CHAMANBAZ M,DABBENCE F,TEMPO R,et al.A statistical learning theory approach for uncertain linear and bilinear matrix inequalities[J].Automatic,2014,50(6):1617-1625.
    [7] CHEN G,SUGIE T L.Analysis and synthesis of state feedback systems based on multipliers and LMI[C]//Proceedings of the American Control Conference.Piscataway,NJ:IEEE Press,1998:537-541.
    [8] FU R,HUANG L.Optimized LMI algorithm for L-analysis and synthesis with application in power system[J].Proceedings of the Chinese Society for Electrical Engineering,2002,22(10):7-11.
    [9] 俞立.鲁棒控制-线性矩阵不等式处理方法[M].北京:清华大学出版社,2002:88-120.YU L.Robust control-linear matrix inequalities approach[M].Beijing:Tsinghua University Press,2002:88-120(in Chinese).
    [10] 傅剑,杨卫东,李伯群,等.基于μ综合的热轧动态设定AGC鲁棒控制[J].北京科技大学学报,2006,28(3):293-298.FU J,YANG W D,LI B Q,et al.Robust control of hot rolling dynamic setting AGC based on μ synthesis[J].Chinese Journal of Engineering,2006,28(3):293-298(in Chinese).
    [11] WANG J L,YANG G H,LIU J.An LMI approach to H-index and mixed H-/H fault detection observer design[J].Automatic,2007,43(9)1656-1665.
    [12] STEIN G,DOYLE J C.Beyond singular values and loop shapes[J].AIAA Journal of Guidance and Control,1991,14(1):5-16.
    [13] 郑大钟.线性系统理论[M].北京:清华大学出版社,1990:10.ZHENG D Z.Linear system theory[M].Beijing:Tsinghua University Press,1990:10(in Chinese).
    [14] SERRE D.Matrices:Theory and applications[M].New York:Springer,2002:6-7.
    [15] 何芝强.PID控制器参数整定方法及其应用研究[D].杭州:浙江大学,2005:35-38.HE Z Q.The PID controller parameter setting method and application research[D].Hangzhou:Zhejiang University,2005:35-38.
  • 加载中
计量
  • 文章访问数:  901
  • HTML全文浏览量:  44
  • PDF下载量:  2366
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-31
  • 网络出版日期:  2016-10-20

目录

    /

    返回文章
    返回
    常见问答