留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

求解概率优化问题的微种群免疫优化算法

张著洪 张仁崇

张著洪, 张仁崇. 求解概率优化问题的微种群免疫优化算法[J]. 北京航空航天大学学报, 2016, 42(9): 1785-1794. doi: 10.13700/j.bh.1001-5965.2015.0563
引用本文: 张著洪, 张仁崇. 求解概率优化问题的微种群免疫优化算法[J]. 北京航空航天大学学报, 2016, 42(9): 1785-1794. doi: 10.13700/j.bh.1001-5965.2015.0563
ZHANG Zhuhong, ZHANG Renchong. Micro-immune optimization algorithm for solving probabilistic optimization problems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(9): 1785-1794. doi: 10.13700/j.bh.1001-5965.2015.0563(in Chinese)
Citation: ZHANG Zhuhong, ZHANG Renchong. Micro-immune optimization algorithm for solving probabilistic optimization problems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(9): 1785-1794. doi: 10.13700/j.bh.1001-5965.2015.0563(in Chinese)

求解概率优化问题的微种群免疫优化算法

doi: 10.13700/j.bh.1001-5965.2015.0563
基金项目: 国家自然科学基金(61563009);国家教育部博士点专项基金(20125201110003);贵州大学研究生创新基金(2015057)
详细信息
    作者简介:

    张著洪,男,博士,教授,博士生导师。主要研究方向:控制理论与计算智能。Tel.:0851-83629086,E-mail:zhzhang@gzu.edu.cn;张仁崇男,硕士研究生。主要研究方向:智能优化算法。Tel.:14785155567,E-mail:zhangrenchong1990@163.com

    通讯作者:

    张著洪,Tel.:0851-83629086,E-mail:zhzhang@gzu.edu.cn

  • 中图分类号: TP301.6

Micro-immune optimization algorithm for solving probabilistic optimization problems

Funds: National Natural Science Foundation of China (61563009); Doctoral Fund of Ministry of Education of China (20125201110003); Graduate Innovation Fund of Guizhou University (2015057)
  • 摘要: 针对未知随机变量分布环境下的非线性概率优化模型,探讨微种群免疫优化算法。算法设计中,基于危险理论的应答模式,设计隐并行优化结构;经由自适应采样方法辨析优质和劣质个体;通过动态调整个体的危险半径确定危险区域和不同类型子群;利用多种变异策略指导个体展开多方位局部和全局搜索。该算法的计算复杂度依赖于迭代数、变量维数和群体规模,其具有进化种群规模小、可调参数少和结构简单等优点。借助理论测试例子和公交车调度问题,比较性的数值实验显示,此算法在寻优效率、搜索效果等方面均有一定的优势,对复杂概率优化模型有较好潜力。

     

  • [1] LIU B D.Uncertainty theory:A branch of mathematics for modeling human uncertainty [M].Berlin:Springer-Varlag, 2010:81-113.
    [2] 麻倩倩.一类随机机会约束规划的算法及应用研究[D].保定:华北电力大学,2006:1-28.MA Q Q.Research on the algorithm and application for a class of stochastic chance-constrained programming[D].Baoding:North China Electric Power University,2006:1-28(in Chinese).
    [3] LIU B D.Theory and practice of uncertain programming[M].2nd ed.Berlin:Springer-Varlag,2009:25-55.
    [4] 丁晓东,吴让泉,邵世煌.含有模糊和随机参数的混合机会约束规划模型[J].控制与决策,2002,17(5):587-590.DING X D,WU R Q,SHAO S H.Hybrid programming model with fuzzy and stochastic parameters[J].Control and Decision,2002,17(5):587-590(in Chinese).
    [5] NING Y,TANG W,WANG H.Hybrid genetic-SPSA algorithm based on random fuzzy simulation for chance-constrained programming[M]//WANG L,JIN Y.Fuzzy systems and know-ledge discovery.Berlin:Springer-Varlag,2005:332-335.
    [6] 刘宝碇,赵瑞清.随机规划与模糊规划[M].北京:清华大学出版社,1998:74-94.LIU B D,ZHAO R Q.Stochastic programming and fuzzy programming[M].Beijing:Tsinghua University Press,1998:74-94(in Chinese).
    [7] LIU X,LIN L,ZANG D.Stochastic programming models and hybrid intelligent algorithm for unbalanced bidding problem[J].Computer and Information Science,2009,2(1):188-194.
    [8] ZHANG H,HA M,XING H.Chance-constrained programming on Sugeno measure space[J].Expert Systems with Applications,2011,38(9):11527-11533.
    [9] 肖宁,曾建潮.基于随机模拟与 PSO 算法相结合的随机机会约束规划算法[J].计算机应用与软件,2009,26(4):40-41.XIAO N,ZENG J C.Algorithm of stochastic chance-constrained programming based on combination of random simulation and PSO algorithm[J].Computer Application and Software,2009,26(4):40-41(in Chinese).
    [10] 肖宁.求解随机机会约束规划的混合智能算法[J].计算机工程与应用,2010,46(22):43-46.XIAO N.Solving stochastic chance-constrained programming problems with hybrid intelligent algorithm[J].Computer Engineering and Applications,2010,46(22):43-46(in Chinese).
    [11] 卢福强,黄敏,王兴伟.虚拟企业风险管理的机会约束规划模型及算法[J].信息与控制,2009,38(4):399-405.LU F Q,HUANG M,WANG X W.Chance-constraint programming model and algorithm for risk management of virtual enterprise[J].Information and Control,2009,38(4):399-405(in Chinese).
    [12] 艾宁宁.基于混合智能算法求解随机期望值模型和机会约束规划[D].西安:长安大学,2012:1-41.AI N N.A study hybrid algorithm solving stochastic expected value models and chance-constrained programming[D].Xi'an:Chang'an University,2012:1-41(in Chinese).
    [13] XIAO N.An algorithm for solving stochastic chance-constrained programming problem[J].Advanced Materials Research,2014,912-914:1138-1141.
    [14] 段富,杨茸.求解随机机会约束规划的混合智能算法及应用[J].计算机应用,2012,32(8):2230-2234.DUAN F,YANG R.Hybrid intelligent algorithm for solving stochastic chance-constrained programming and its application[J].Journal of Computer Applications,2012,32(8):2230-2234(in Chinese).
    [15] MATZINGER P.Tolerance,danger,and the extended family[J].Annual Review of Immunology,1994,12:991-1045.
    [16] WU D,GAN D Q,JIANG J N.An improved micro-particle swarm optimization algorithm and its application in transient stability constrained optimal power flow[J].International Transactions on Electrical Energy Systems,2014,24:395-411.
    [17] VIVEROS-JIMÉNEZ F,MEZURA-MONTES E,GELBUKH A.Empirical analysis of a micro-evolutionary algorithm for numerical optimization[J].International Journal of Physical Sciences,2012,7(8):1235-1258.
    [18] ABIYEV R H,TUNAY M.Optimization of high-dimensional functions through hypercube evaluation[J].Computational Intelligence and Neuroscience,2015,2015:1-11.
    [19] 许旺土,何世伟,宋瑞,等.多时段公交发车间隔优化的随机期望值模型[J].北京理工大学学报,2009,29(8):676-679.XU W T,HE S W,SONG R,et al.Stochastic expected value model for multiple bus headways optimization[J].Transaction of Beijing Institute of Technology,2009,29(8):676-679(in Chinese).
  • 加载中
计量
  • 文章访问数:  884
  • HTML全文浏览量:  38
  • PDF下载量:  764
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-01
  • 网络出版日期:  2016-09-20

目录

    /

    返回文章
    返回
    常见问答