Take-off and landing adaptability of A380-800 large aircraft on existing pavement
-
摘要: 为了探究已建跑道能否满足大型飞机A380-800起降的要求,建立了弹性层状的刚性道面模型和A380-800的整个主起落架模型,通过数值计算,分析了A380-800对道面土基的响应深度、场道面层层底最大拉应力和面层最大竖向位移的影响,并与B747-400的计算结果进行了对比。结果表明:尽管A380-800的最大起飞重量比B747-400大41.09%,但A380-800主起落架机轮数目多、间距和轮距均较大,有利于增强应力扩散、减弱叠加效应,所以其土基响应深度与B747-400仅相差4.29%;其层底最大拉应力的平面位置因受主起落架机轮布置的影响,与B747-400的层底最大拉应力出现在不同位置,且两种机型的层底最大拉应力值仅相差1.09%;其面层最大竖向位移出现在三轴双轮中心轴所在断面,而B747-400面层最大竖向位移出现在内侧双轴双轮的后轴所在断面,且两种机型的面层最大竖向位移仅相差0.49%。因此,从力学特性角度,以B747-400为设计机型或适应B747-400正常起降的道面结构层能够适应A380-800的正常起降。Abstract: In order to explore whether the existing rigid pavement can meet the normal take-off and landing requirements of A380-800 aircraft, the elastic layered model of rigid pavement and the whole main landing gear model of A380-800 are established, and numerical calculation is used to analyze the effect between A380-800 and pavement on influencing depth, the maximum tensile stress on panel bottom and the maximum vertical displacement on panel surface. The results are as follows: although the maximum take-off weight of A380-800 is 41.09% heavier than that of B747-400, more main landing gear tire number and larger main landing gear spacing and wheel track are advantageous to stress diffusion enhancement and superposition effect reduction, so the influencing depth of A380-800 is 4.29% more than that of B747-400; the locations of the maximum tensile stresses on panel bottom of A380-800 and B747-400 are different because of the main landing gear arrangement, and the maximum tensile stress on panel bottom of A380-800 is 1.09% less than that of B747-400; the maximum vertical displacement on the surface of A380-800 appears in the center of the three-axis double shaft section, while that of B747-400 appears in the back axle of the medial two-axis double cross section, and the maximum vertical displacement on panel surface of A380-800 is 0.49% less than that of B747-400 within the loading area. Therefore, the pavement structure layer which takes B747-400 as a design model or adapts to B747-400 normal take-off and landing can adapt to the normal take-off and landing of A380-800 from the perspective of mechanical properties.
-
[1] BOUSSINESQ J.Application des potential a'L etude de L equilibre et due mouvement des solideses elastique[R].Paris:Gauthier-Villars,1885. [2] HAMMONS M I,IOANNIDES A M.Advanced pavement design:Finite element modeling for rigid pavement joints,Report II:Model development[R].Washington,D.C.:U.S.Department of Transportation Federal Aviation Administration,1998. [3] 呙润华,凌建明.飞机荷载作用下道面地基附加应力特征[J].同济大学学报(自然科学版),2001,29(3):288-293.WO R H,LING J M.Additional stresses of pavement subgrade resulted from aircraft loads[J].Journal of Tongji University (Natural Science),2001,29(3):288-293(in Chinese). [4] 凌建明,刘文,赵鸿铎.大型军用飞机多轮荷载作用下水泥混凝土道面的结构响应[J].土木工程学报,2007,40(4):60-65.LING J M,LIU W,ZHAO H D.Mechanical responses of rigid airport pavement to multiple-gear military aircraft loading[J].China Civil Engineering Journal,2007,40(4):60-65(in Chinese). [5] 刘子钲,赵鸿铎.A380-800飞机荷载作用下复合道面的结构响应分析[J].西部交通科技,2014(2):69-74.LIU Z Z,ZHAO H D.Structure response analysis of composite pavement under A380-800 aircraft load[J].Western China Communications Science﹠Technology,2014(2):69-74(in Chinese). [6] 滕力鹏,柴震林,袁捷,等.机场水泥混凝土道面飞机荷载影响深度分析[J].公路工程,2013,38(3):100-103.TENG L P,CHAI Z L,YUAN J,et al.Analysis of influence depth for airport cement concrete pavement induced by aircraft load[J].Highway Engineering,2013,38(3):100-103(in Chinese). [7] 刘文,凌建明,赵鸿铎.考虑接缝影响的机场水泥混凝土道面结构响应[J].公路交通科技,2007,24(12):15-18.LIU W,LING J M,ZHAO H D.Analysis on mechanical responses of rigid airport pavement with load transfer of joints[J].Journal of Highway and Transportation Research and Development,2007,24(12):15-18(in Chinese). [8] 中国民用航空局.民用机场水泥混凝土道面设计规范:MH/T 5004-2010[S].北京:中国民航出版社,2010.Civil Aviation Administration of China.Specifications for airport cement concrete pavement design:MH/T 5004-2010[S].Beijing:China Civil Aviation Publishing House,2010(in Chinese). [9] 王鹏,姚学东,郭成超.道路结构层合并对计算结果的影响[J].路基工程,2012(5):36-38.WANG P,YAO X D,GUO C C.Influence of combination of road structural layers on calculation results[J].Sub-grade Engineering,2012(5):36-38(in Chinese). [10] 杨斐,杨宇亮,孙立军.飞机起降荷载作用下的道面地基沉降[J].同济大学学报(自然科学版),2008,36(6):744-748.YANG F,YANG Y L,SUN L J.Settlement of runway subgrade under moving aircraft loads[J].Journal of Tongji University(Natural Science),2008,36(6):744-748(in Chinese). [11] 张献民,薛华鑫,董倩,等.飞机跑道荷载响应深度变化规律[J].北京航空航天大学学报,2014,40(4):427-432.ZHANG X M,XUE H X,DONG Q,et al.Influencing depth under aircraft loads of runway[J].Journal of Beijing University of Aeronautics and Astronautics,2014,40(4):427-432(in Chinese). [12] 周正峰,凌建明.基于ABAQUS的机场刚性道面结构有限元模型[J].交通运输工程学报2009,9(3):39-44.ZHOU Z F,LING J M.Finite element model of airport rigid pavement structure based on ABAQUS[J].Journal of Traffic and Transportation Engineering,2009,9(3):39-44(in Chinese). [13] 张献民,董倩,吕耀志.飞机主起落架构型对道面力学响应的影响[J].西南交通大学学报,2014,49(4):675-681.ZHANG X M,DONG Q,LV Y Z.Mechanical responses of pavement under aircrafts with different main landing gears[J].Journal of Southwest Jiaotong University,2014,49(4):675-681(in Chinese). [14] 邓学钧.路基路面工程[M].北京:人民交通出版社,2010:40-41.DENG X J.Road subgrade and pavement engineering[M].Beijing:China Communications Press,2010:40-41(in Chinese). [15] 卢正,王长柏,付建军,等.交通荷载作用下公路路基工作区深度研究[J].岩土力学 2013,34(2):316-321.LU Z,WANG C B,FU J J,et al.Research on influence depth of road subgrade induced by vehicle loads[J].Rock and Soil Mechanics,2013,34(2):316-321(in Chinese). [16] 杨召焕,程国勇.机场柔性道面地基工作区深度研究[J].公路交通科技 2013,30(10):11-17.YANG Z H,CHENG G Y.Study on service depth of airport flexible pavement subgrade[J].Journal of Highway and Transportation Research and Development,2013,30(10):11-17(in Chinese). 期刊类型引用(17)
1. 王金硕,何冉,刘海平. 高超滑翔飞行器对地侦察轨迹的分段优化策略. 战术导弹技术. 2025(01): 113-125+135 . 百度学术
2. 汪馨茹,苏子康,荆献勇,曾靖轩,黄宇. 基于未知坡度倾斜跑道地形融合的无人机定点着陆轨迹优化. 战术导弹技术. 2024(06): 94-106 . 百度学术
3. 熊文祥,陈倩,汪守利,杨贵玉,杨钊. 基于二阶锥规划的飞行器滑翔段轨迹优化. 导航与控制. 2024(Z1): 129-136 . 百度学术
4. 徐慧,蔡光斌,崔亚龙,侯明哲,姚二亮. 高超声速滑翔飞行器再入轨迹优化. 哈尔滨工业大学学报. 2023(04): 44-55 . 百度学术
5. 邵雷,李明杰,赵锦. 基于局部模型的再入滑翔类飞行器轨迹在线调整算法设计. 空军工程大学学报. 2023(03): 64-72 . 百度学术
6. 王帅,杨冬,陈贵亮,唐润智. 基于自适应radau伪谱法的机械手轨迹规划方法研究. 制造业自动化. 2022(03): 103-108+117 . 百度学术
7. 周池军,邵雷,骆长鑫,李明杰,雷虎民. 高动态目标拦截弹制导与控制前沿技术展望. 空天技术. 2022(02): 61-74 . 百度学术
8. 吕名添,周祥,张洪波. 基于解析初值的滑翔飞行器轨迹快速规划方法. 宇航总体技术. 2022(04): 35-40 . 百度学术
9. 张伟,陈国明,黄威,薛辉辉. 空投变掠翼滑翔炸弹轨迹优化. 飞行力学. 2022(06): 39-43 . 百度学术
10. 宋少倩,陈永信,任鹏飞,周文勇,李伟喆. 面向航程能力的固体火箭发动机方案设计优化. 哈尔滨工业大学学报. 2022(12): 27-37 . 百度学术
11. 王培臣,张睿轩,闫循良. 不确定条件下高超声速俯冲弹道鲁棒优化. 飞控与探测. 2022(06): 61-68 . 百度学术
12. 刘平,刘航,仇国庆,刘兴高. 热率约束下高超声速飞行器Gauss时间网格参数化轨迹规划. 控制理论与应用. 2022(12): 2283-2292 . 百度学术
13. 贾高伟,王建峰. 无人机集群任务规划方法研究综述. 系统工程与电子技术. 2021(01): 99-111 . 百度学术
14. 颜楚雄,王蕴宝,秦绪国,童轶男,宋加洪. 最小动压约束下的全程轨迹优化设计方法. 导弹与航天运载技术. 2021(01): 86-90 . 百度学术
15. 任鹏飞,王洪波,周国峰,王亮,蔡强,韩英宏,余家泉,袁亚. 临近空间固体动力飞行器发动机与轨迹一体化设计优化. 推进技术. 2021(09): 1936-1947 . 百度学术
16. 陈永信. 滑翔飞行器气动外形与轨迹一体化设计优化. 空天防御. 2021(03): 76-84 . 百度学术
17. 崔乃刚,郭冬子,李坤原,韦常柱. 飞行器轨迹优化数值解法综述. 战术导弹技术. 2020(05): 37-51+75+5 . 百度学术
其他类型引用(14)
-

计量
- 文章访问数: 1248
- HTML全文浏览量: 51
- PDF下载量: 649
- 被引次数: 31