Differential game guidance law for dual and bounded controlled missiles
-
摘要: 针对有界控制导弹采用鸭舵或尾舵单一控制形式存在的劣势,基于双边优化微分对策理论,推导了一种有界双重控制导弹微分对策制导律。该制导律不仅将鸭舵与尾舵两组舵面的控制有效融合在一起,而且实现了有界控制命令最优的分配设计。分析了该微分对策制导律的对策空间,并从弹目机动性能比和控制系统时间常数比之间的关系,给出了鞍点解的存在条件。考虑非完全信息情形,完成了目标加速度滤波器和拦截性能衡量指标的设计。采用Monte Carlo法进行了制导性能的仿真验证,结果表明:所设计的有界双重控制导弹制导律与采用单一的鸭舵控制或尾舵控制的导弹相比不仅机动性要求较低,且具有较高的命中概率。Abstract: Due to disadvantages of single canard fin control or tail fin control for bounded-control interception missiles, a novel dual and bounded controlled differential game guidance law is presented based on two-sided optimization differential game theory. This guidance law realizes fusion of these two fin controls and optimal distribution of control commands. The differential game space of this guidance law is analyzed and the existence conditions of saddle point solution are studied from the relationships between maneuvering performance ratio and time constant ratio of the two-sided control systems. With the consideration of imperfect information scenario, a filter for target accelerations and a performance index for target interception are presented. Based on Monte Carlo method, simulations are carried out and the results show that this dual and bounded controlled guidance law has higher single shot kill probability and lower maneuvering performance requirements compared with the single-controlled scenario.
-
Key words:
- terminal guidance law /
- differential game /
- dual control /
- canard fin control /
- target interception
-
[1] GUTMAN S.Superiority of canards in homing missiles[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39(3):740-746. [2] IDAN M,SHIMA T,GOLAN O M.Integrated sliding mode autopilot-guidance for dual control missiles:AIAA-2005-6455 [R].Reston:AIAA,2005. [3] SHIMA T,GOLAN O M.Linear quadratic differential games guidance law for dual controlled missiles[J].IEEE Transactions on Aerospace and Electronic Systems,2007,43(3):834-842. [4] CHO H,RYOO C K,TSOURDOS A,et al.Optimal impact angle control guidance law based on linearization about collision triangle[J].Journal of Guidance,Control,and Dynamics,2014,37(3):958-964. [5] WEISS M,SHIMA T.Optimal linear-quadratic missile guidance laws with penalty on command variability[J].Journal of Guidance,Control,and Dynamics,2015,38(2):226-237. [6] 花文华,孟庆龄,张拥军.寻的导弹范数型微分对策制导律[J].高技术通讯,2013,23(4):392-399.HUA W H,MENG Q L,ZHANG Y J.Norm differential game guidance law for homing missiles[J].Chinese High Technology Letters,2013,23(4):392-399(in Chinese). [7] TAUB I,SHIMA T.Intercept angle missile guidance under time varying acceleration bounds[J].Journal of Guidance,Control,and Dynamics,2013,36(3):686-699. [8] 花文华,孟庆龄,张金鹏.有界控制导弹随机最优制导律[J].固体火箭技术,2015,38(1):7-11.HUA W H,MENG Q L,ZHANG J P.Stochastic optimal guidance law for bounded-control missiles[J].Journal of Solid Rocket Technology,2015,38(1):7-11(in Chinese). [9] 花文华,陈兴林.变速导弹有界控制非线性微分对策制导律[J].控制与决策,2011,26(2):1886-1890.HUA W H,CHEN X L.Nonlinear bounded-control differential game guidance law for variable-speed missiles[J].Control and Decision,2011,26(2):1886-1890(in Chinese). [10] SHINAR J,TURETSKY V,OSHMAN Y.Integrated estimation/ guidance design approach for improved homing against randomly maneuvering targets[J].Journal of Guidance,Control,and Dynamics,2007,30(1):154-161. [11] SHINAR J,SHIMA T.Nonorthodox guidance law development approach for intercepting maneuvering targets[J].Journal of Guidance,Control,and Dynamics,2002,25(4):658-666. [12] PROKOPOVY O,SHIMA T.Linear quadratic optimal cooperative strategies for active aircraft protection[J].Journal of Guidance,Control,and Dynamics,2013,36(3):753-764. [13] BARDHAN R,GHOSE D.Nonlinear differential games-based impact-angle-constrained guidance law[J].Journal of Guidance,Control,and Dynamics,2015,38(3):384-402. [14] BASIMANEBOTLHE O,XUE X P.Stochastic optimal control to a nonlinear differential game[EB/J].Advances in Difference Equations,2014[2014-10-14].http://www.advancesindifferenceequations.com/content/2014/1/266. [15] SHINAR J,STEINBERG D.Analysis of optimal evasive maneuvers based on a linearized two-dimensional kinematic model[J].Journal of Aircraft,1977,14(8):795-802.
点击查看大图
计量
- 文章访问数: 932
- HTML全文浏览量: 33
- PDF下载量: 616
- 被引次数: 0