留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有界双重控制导弹微分对策制导律

花文华 孟庆龄 张金鹏 张拥军

花文华, 孟庆龄, 张金鹏, 等 . 有界双重控制导弹微分对策制导律[J]. 北京航空航天大学学报, 2016, 42(9): 1851-1856. doi: 10.13700/j.bh.1001-5965.2015.0574
引用本文: 花文华, 孟庆龄, 张金鹏, 等 . 有界双重控制导弹微分对策制导律[J]. 北京航空航天大学学报, 2016, 42(9): 1851-1856. doi: 10.13700/j.bh.1001-5965.2015.0574
HUA Wenhua, MENG Qingling, ZHANG Jinpeng, et al. Differential game guidance law for dual and bounded controlled missiles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(9): 1851-1856. doi: 10.13700/j.bh.1001-5965.2015.0574(in Chinese)
Citation: HUA Wenhua, MENG Qingling, ZHANG Jinpeng, et al. Differential game guidance law for dual and bounded controlled missiles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(9): 1851-1856. doi: 10.13700/j.bh.1001-5965.2015.0574(in Chinese)

有界双重控制导弹微分对策制导律

doi: 10.13700/j.bh.1001-5965.2015.0574
基金项目: 航空科学基金(2015ZC12006)
详细信息
    作者简介:

    花文华,男,博士,高级工程师。主要研究方向:飞行器制导与控制。Tel.:0379-63385265,E-mail:huawh6611@163.com

    通讯作者:

    花文华,Tel.:0379-63385265,E-mail:huawh6611@163.com

  • 中图分类号: V448.133;TB553

Differential game guidance law for dual and bounded controlled missiles

Funds: Aeronautical Science Foundation of China (2015ZC12006)
  • 摘要: 针对有界控制导弹采用鸭舵或尾舵单一控制形式存在的劣势,基于双边优化微分对策理论,推导了一种有界双重控制导弹微分对策制导律。该制导律不仅将鸭舵与尾舵两组舵面的控制有效融合在一起,而且实现了有界控制命令最优的分配设计。分析了该微分对策制导律的对策空间,并从弹目机动性能比和控制系统时间常数比之间的关系,给出了鞍点解的存在条件。考虑非完全信息情形,完成了目标加速度滤波器和拦截性能衡量指标的设计。采用Monte Carlo法进行了制导性能的仿真验证,结果表明:所设计的有界双重控制导弹制导律与采用单一的鸭舵控制或尾舵控制的导弹相比不仅机动性要求较低,且具有较高的命中概率。

     

  • [1] GUTMAN S.Superiority of canards in homing missiles[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39(3):740-746.
    [2] IDAN M,SHIMA T,GOLAN O M.Integrated sliding mode autopilot-guidance for dual control missiles:AIAA-2005-6455 [R].Reston:AIAA,2005.
    [3] SHIMA T,GOLAN O M.Linear quadratic differential games guidance law for dual controlled missiles[J].IEEE Transactions on Aerospace and Electronic Systems,2007,43(3):834-842.
    [4] CHO H,RYOO C K,TSOURDOS A,et al.Optimal impact angle control guidance law based on linearization about collision triangle[J].Journal of Guidance,Control,and Dynamics,2014,37(3):958-964.
    [5] WEISS M,SHIMA T.Optimal linear-quadratic missile guidance laws with penalty on command variability[J].Journal of Guidance,Control,and Dynamics,2015,38(2):226-237.
    [6] 花文华,孟庆龄,张拥军.寻的导弹范数型微分对策制导律[J].高技术通讯,2013,23(4):392-399.HUA W H,MENG Q L,ZHANG Y J.Norm differential game guidance law for homing missiles[J].Chinese High Technology Letters,2013,23(4):392-399(in Chinese).
    [7] TAUB I,SHIMA T.Intercept angle missile guidance under time varying acceleration bounds[J].Journal of Guidance,Control,and Dynamics,2013,36(3):686-699.
    [8] 花文华,孟庆龄,张金鹏.有界控制导弹随机最优制导律[J].固体火箭技术,2015,38(1):7-11.HUA W H,MENG Q L,ZHANG J P.Stochastic optimal guidance law for bounded-control missiles[J].Journal of Solid Rocket Technology,2015,38(1):7-11(in Chinese).
    [9] 花文华,陈兴林.变速导弹有界控制非线性微分对策制导律[J].控制与决策,2011,26(2):1886-1890.HUA W H,CHEN X L.Nonlinear bounded-control differential game guidance law for variable-speed missiles[J].Control and Decision,2011,26(2):1886-1890(in Chinese).
    [10] SHINAR J,TURETSKY V,OSHMAN Y.Integrated estimation/ guidance design approach for improved homing against randomly maneuvering targets[J].Journal of Guidance,Control,and Dynamics,2007,30(1):154-161.
    [11] SHINAR J,SHIMA T.Nonorthodox guidance law development approach for intercepting maneuvering targets[J].Journal of Guidance,Control,and Dynamics,2002,25(4):658-666.
    [12] PROKOPOVY O,SHIMA T.Linear quadratic optimal cooperative strategies for active aircraft protection[J].Journal of Guidance,Control,and Dynamics,2013,36(3):753-764.
    [13] BARDHAN R,GHOSE D.Nonlinear differential games-based impact-angle-constrained guidance law[J].Journal of Guidance,Control,and Dynamics,2015,38(3):384-402.
    [14] BASIMANEBOTLHE O,XUE X P.Stochastic optimal control to a nonlinear differential game[EB/J].Advances in Difference Equations,2014[2014-10-14].http://www.advancesindifferenceequations.com/content/2014/1/266.
    [15] SHINAR J,STEINBERG D.Analysis of optimal evasive maneuvers based on a linearized two-dimensional kinematic model[J].Journal of Aircraft,1977,14(8):795-802.
  • 加载中
计量
  • 文章访问数:  932
  • HTML全文浏览量:  33
  • PDF下载量:  616
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-06
  • 网络出版日期:  2016-09-20

目录

    /

    返回文章
    返回
    常见问答