留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于张量分解的动态Web服务推荐

张万才 刘旭东 郭晓辉

张万才, 刘旭东, 郭晓辉等 . 基于张量分解的动态Web服务推荐[J]. 北京航空航天大学学报, 2016, 42(9): 1892-1902. doi: 10.13700/j.bh.1001-5965.2015.0582
引用本文: 张万才, 刘旭东, 郭晓辉等 . 基于张量分解的动态Web服务推荐[J]. 北京航空航天大学学报, 2016, 42(9): 1892-1902. doi: 10.13700/j.bh.1001-5965.2015.0582
ZHANG Wancai, LIU Xudong, GUO Xiaohuiet al. Dynamic Web service recommendation based on tensor factorization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(9): 1892-1902. doi: 10.13700/j.bh.1001-5965.2015.0582(in Chinese)
Citation: ZHANG Wancai, LIU Xudong, GUO Xiaohuiet al. Dynamic Web service recommendation based on tensor factorization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(9): 1892-1902. doi: 10.13700/j.bh.1001-5965.2015.0582(in Chinese)

基于张量分解的动态Web服务推荐

doi: 10.13700/j.bh.1001-5965.2015.0582
基金项目: 国家自然科学基金(61370057);国家“863”计划(2012AA011203);国家“973”计划(2014CB340304)
详细信息
    作者简介:

    刘旭东,男,博士,教授,博士生导师。主要研究方向:服务计算、云计算。Tel.:010-82316285,E-mail:liuxd@act.buaa.edu.cn;张万才,男,博士研究生。主要研究方向:服务计算。E-mail:zhangwc@act.buaa.edu.cn

    通讯作者:

    刘旭东,Tel.:010-82316285,E-mail:liuxd@act.buaa.edu.cn

  • 中图分类号: TP399

Dynamic Web service recommendation based on tensor factorization

Funds: National Natural Science Foundation of China (61370057); National High Technology Research and Development Program of China (2012AA011203); National Key Basic Research Program of China (2014CB340304)
  • 摘要: 在服务计算领域中,为了能够在大量具有相同功能的Web服务以及API等数据资源中选择适合用户的服务和接口,提出了服务推荐系统。当前常用的基于服务质量(QoS)的服务推荐系统所采用的模型假定服务的QoS值恒定不变,是一种由服务和用户的二元关系构成的二维静态模型。针对实际应用中,QoS是受到多种因素影响的变量这一问题,提出了一种可以描述多个影响QoS因素的张量模型,并利用张量分解算法来对服务推荐算法进行了改进。实验结果表明:提出的基于张量分解的服务推荐算法与6种现有算法相比较,预测服务的QoS值的绝对平均误差(MAE)不同程度地降低了20%~50%,并且所建模型能够描述更多的影响因素,从而可对服务进行动态推荐。

     

  • [1] STRUNK A.QoS-aware service composition:A survey[C]//Proceedings of 8th IEEE European Conference on Web Services(ECOWS).Piscataway,NJ:IEEE Press,2010:67-74.
    [2] HADDAD J,MANOUVRIER M,RUKOZ M.TQoS:Transactional and QoS-aware selection algorithm for automatic Web service composition[J].IEEE Transactions on Services Computing,2010,3(1):73-85.
    [3] AI-MASRI E,MAHMOUD Q H.Identifying client goals for Web service discovery[C]//IEEE International Conference on Services Computing,2009.Piscataway,NJ:IEEE Press,2009:202-209.
    [4] ZHENG Z B,MA H,LYU M R,et al.WSRec:A collaborative filtering based Web service recommender system[C]//Internationnal Conference on Web Services.Piscataway,NJ:IEEE Press,2009:437-444.
    [5] SUNG H H.Helping online customers decide through Web personalization[J].IEEE Intelligent Systems,2005,17(6):34-43.
    [6] ZHENG Z,MA H,LYU M R,et al.QoS-aware Web service recommendation by collaborative filtering [J].Services Computing,2011,4(2):140-152.
    [7] XIONG L,CHEN X,HUANG T K,et al.Temporal collaborative filtering with Bayesian probabilistic tensor factorization [C]// Proceedings of the 10th SIAM International Conference on Data Mining,SDM 2010.Philadelphia:Society for Industrial and Applied Mathematics,2010:211-222.
    [8] TUCKER L R.Some mathematical notes on three-mode factor analysis[J].Psychometrika,1966,31(3):279-311.
    [9] HARSHMAN R A.Foundations of the PARAFAC procedure:Models and conditions for an "explanatory" multi-model factor analysis[J].UCLA Working Papers in Phonetics,1970(16):1-84.
    [10] KOLDA T G,BADER B W.Tensor decompositions and applications[J].SIAM Review,2009,51(3):455-500.
    [11] ACAR R,YENER B.Unsupervised multiway data analysis:A literature suervey[J].IEEE Transactions on Knowledge and Data Enginerering,2009,21(1):6-20.
    [12] CHEN X,ZHENG Z,YU Q,et al.Web service recommendation via exploiting location and QoS information[J].IEEE Transactions on Parallel and Distributed Systems,2014,25(7):1913-1924.
    [13] LO W,YIN J,DENG S,et al.Collaborative Web service QoS prediction with location-based regularization[C]//2012 IEEE 19th International Conference on Web Services (ICWS).Piscataway,NJ:IEEE Press,2012:464-471.
    [14] ZHENG Z,MA H,LYU M R,et al.Collaborative Web service QoS prediction via neighborhood integrated matrix factorization[J].IEEE Transactions on Services Computing,2013,6(3):289-299.
    [15] CHEN X,ZHENG Z,LIU X,et al.Personalized QoS-aware Web service recommendation and visualization[J].IEEE Transactions on Services Computing,2013,6(1):35-47.
    [16] WU C,QIU W W,ZHENG Z B.QoS prediction of Web services based on two-phase K-means clustering[C]//2015 IEEE International Conference on Web Services(ICWS).Piscataway,NJ:IEEE Press,2015:161-168.
    [17] KOLDA T G.Multilinear operators for higher-order decompositions:SAND 2006-2081[R].Livermore,CA:Sandia National Laboratores,2006.
    [18] WELLING M,WEBER M.Positive tensor factorization[J].Pattern Recognition Letters,2001,22(12):1255-1261.
    [19] KOLDA T G,BADER B W,SUN J M,et al.MATLAB tensor toolbox version 2.5[CP/OL].(2012-02-01)[2015-08-08].http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.5.html.
    [20] [2015-08-08].http://www.service4all.org.cn/servicexchange/.
    [21] [2015-08-08].http://www.planet-lab.org/.
    [22] HERLOCKER J,KONSTAN J,BORCHERS A,et al.An algorithmic framework for performing collaborative filtering[C]//Proceedings of the 22nd Annual International ACM SIGIR Conference on Researsh and Development in Information Retrieval (SIGIR-99).New York:ACM Press,1999:230-237.
    [23] SALAKHUTDINOV R,MNIH A.Probabilistic matrix factorization[J].Advances in Neural Information Proceeding Systems,2008,20:1-8.
    [24] WEBB B.Netflix update:Try this at home (2006) [EB/OL].[2015-08-08].http://sifter.org/~simon/journal/20061211.html.
  • 加载中
计量
  • 文章访问数:  923
  • HTML全文浏览量:  23
  • PDF下载量:  764
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-08
  • 网络出版日期:  2016-09-20

目录

    /

    返回文章
    返回
    常见问答