Surface cracking and melting behavior of tungsten-vanadium alloys under thermal shock
-
摘要: 本文研究了机械合金化+热压(HP)烧结制备的钨钒(W-V)合金在热冲击作用下的表面损伤行为。以合金中钒的质量分数作为变量,探究钒质量分数的变化(1%~10%)对钨钒合金抗热冲击性能的影响。利用光学显微镜、扫描电镜、能谱仪、纳米压痕仪等多种测试方式,分析表征了HP烧结钨钒合金的组织结构特征及其经过热冲击测试后的表面开裂及熔化行为特征。结果表明:在1 800℃、20 MPa的压力条件下保温2 h可以制备出致密度高、合金化程度高的钨钒合金,且随着钒质量分数的增加,合金样品的致密度有所提高;合金样品中钨基体硬度大于富钒相,在高能电子束模拟的国际热核聚变实验堆(ITER)边界局域模(ELMs)热冲击作用下,钨基体对裂纹扩展的阻碍作用明显强于富钒相;随着钒质量分数的升高,合金的开裂阈值和熔化阈值均降低,本文对相关机理进行了讨论。Abstract: Surface cracking and melting behavior of tungsten-vanadium (W-V) alloys prepared by mechanical alloying + hot pressing (HP) sintering under thermal shock has been investigated in this paper. Mass fraction of V in the alloy is taken as a variable to explore the effect of mass fraction of V (1%-10%) on thermal shock resistance of W-V alloys. A variety of test methods such as optical microscope, scanning electron microscope, energy disperse spectrometer, and nano indentation are used to analyze the structure characteristics of W-V alloys produced by HP sintering, and the characteristics of surface cracking and melting behavior of W-V alloys under thermal shock. Results show that under the conditions of 1 800℃ and 20 MPa,and with heat preservation for 2 h, W-V alloys with high density and high alloying degree can be produced. Moreover, with the increase of vanadium content, the density of W-V alloys increases. In the alloys, the hardness of tungsten matrix is bigger than vanadium rich phase, and therefore, tungsten matrix's ability of preventing the crack growth is obviously greater than vanadium rich phase, when exposed to thermal shock in international thermonuclear experimental reactor (ITER) edge localized modes (ELMs) which are simulated by high energy electron beam; with the increase of vanadium content, the cracking threshold and melting threshold both decrease. The underlying mechanism is discussed detailed in this paper.
-
Key words:
- hot pressing (HP) sintering /
- tungsten-vanadium alloys /
- thermal shock /
- cracking /
- melting
-
[1] LINKE J,LORENZETTO P,MAJERUS P,et al.EU development of high heat flux components[J].Fusion Science and Technology,2005,47(3):678-685. [2] AYMAR R.ITER R&D:Executive summary:Design overview[J].Fusion Engineering and Design,2001,55(2):107-118. [3] HOLTKAMP N.The status of the ITER design[J].Fusion Engineering and Design,2009,84(2-6):98-105. [4] PHILIPPS V.Tungsten as material for plasma-facing components in fusion devices[J].Journal of Nuclear Materials,2011,415(1):S2-S9. [5] BARABASH V,AKIBA M,MAZUL I,et al.Selection,development and characterisation of plasma facing materials for ITER[J].Journal of Nuclear Materials,1996,233-237(1):718-723. [6] LASSER R,BALUC N,BOUTARD J L,et al.Structural materials for DEMO:The EU development,strategy,testing and modeling[J].Fusion Engineering and Design,2007,82(5-14):511-520. [7] SMID I,AKIBA G,VIEIDER M,et al.Development of tungsten armor and bonding to copper for plasma-interactive components[J].Journal of Nuclear Materials,1998,258-263(1):160-172. [8] ARSHAD K,GUO W,WANG J,et al.Influence of vanadium precursor powder size on microstructures and properties of W-V alloys[J].International Journal of Refractory Metals and Hard Materials,2015,50:59-64. [9] ARSHAD K,ZHAO M Y,YUAN Y,et al.Effects of vanadium concentration on the densification,microstructures and mechanical properties of tungsten vanadium alloys[J].Journal of Nuclear Materials,2014,455(1-3):96-100. [10] ARSHAD K,ZHAO M Y,YUAN Y,et al.Thermal stability evaluation of microstructures and mechanical properties of tungsten vanadium alloys[J].Modern Physics Letters B,2014,28(26):1450207. [11] KEMP R,COTTRELL G A,BHADESHIA H K D H.Designing optimised experiments for the international fusion materials irradiation facility[J].Journal of Nuclear Materials,2007,367-370(Part B):1586-1589. [12] ARSHAD K,DING D,WANG J,et al.Surface cracking of tungsten-vanadium alloys under transient heat loads[J].Nuclear Materials and Energy,2015,3-4:32-36. [13] LIU X,TAMURE S,TOKUNAGE K,et al.High heat flux properties of pure tungsten and plasma sprayed tungsten coatings[J].Journal of Nuclear Materials,2004,329-333(Part A):687-691. [14] ARSHAD K,ZHANG Y,YUAN Y,et al.The role of vanadium additive in the activated sintering and shrinkage rate of tungsten-vanadium alloys[J].Modern Physics Letters B,2015,29(14):1550071. [15] ARSHAD K,ZHAO M Y,YUAN Y,et al.Effects of consolidation conditions on microstructures and properties of tungsten-vanadium alloy[C]//11th International Bhurban Conference on Applied Sciences and Technology.Piscataway,NJ:IEEE Press,2014:12-17. [16] ZHAO M,ZHOU Z,DING Q M,et al.Effect of rare earth elements on the consolidation behavior and microstructure of tungsten alloys[J].International Journal of Refractory Metals and Hard Materials,2015,48:19-23. [17] MAKHANKOV A,BARABASH V,MAZUL I,et al.Performance of the different tungsten grades under fusion relevant power loads[J].Journal of Nuclear Materials,2001,290-293:1117-1122. [18] LINKE J,LOEWENHOFF T,MASSAUT V.Performance of different tungsten grades under transient thermal loads[J].Nuclear Fusion,2011,51(7):73017-73022. [19] 冯正清.关于灰铸铁硬度和强度之间的关系的讨论及其应用[J].铸造,1985(6):34-35.FENG Z Q.Discussion of the relationship between the hardness and strength for gray cast iron and its application[J].Foundry,1985(6):34-35(in Chinese). [20] 操龙飞.金属材料的热膨胀特性研究[D].武汉:武汉科技大学,2013:5-7.CAO L F.Study on thermal expansion properties of steels[D].Wuhan:Wuhan University of Science and Technology,2013:5-7(in Chinese). [21] HUANG B,XIAO Y,HE B,et al.Effect of potassium doping on the thermal shock behavior of tungsten[J].International Journal of Refractory Metals and Hard Materials,2015,51:19-24. [22] DECHAUMPHAI E,BARTON J L,TESMER J R,et al.Near-surface thermal characterization of plasma facing components using the 3-omega method[J].Journal of Nuclear Materials,2014,455(1-3):56-60. [23] HASSANEIN A,BELAN V,KONKASHBAEV I,et al.Modeling and simulation of melt-layer erosion during plasma disruption[J].Journal of Nuclear Materials,1997,241-243(1):288-293. [24] COENEN J W,BAZYLEV B,BREZINSEK S,et al.Tungsten melt layer motion and splashing on castellated tungsten surfaces at the tokamak TEXTOR[J].Journal of Nuclear Materials,2011,415(1):78-82. [25] HUANG S,VLEUGELS J,LI L,et al.Experimental investigation and thermodynamic assessment of the V-W-C system[J].Journal of Alloys and Compounds,2005,395(1-2):68-74. [26] ZHOU Z J,PINTSUK G,LINKE J,et al.Transient high heat load tests on pure ultra-fine grained tungsten fabricated by resistance sintering under ultra-high pressure[J].Fusion Engineering and Design,2010,85(1):115-121.
点击查看大图
计量
- 文章访问数: 924
- HTML全文浏览量: 62
- PDF下载量: 291
- 被引次数: 0