留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种功能梯度Timoshenko梁的损伤识别方法

邓昊 程伟

邓昊, 程伟. 一种功能梯度Timoshenko梁的损伤识别方法[J]. 北京航空航天大学学报, 2016, 42(10): 2214-2221. doi: 10.13700/j.bh.1001-5965.2015.0618
引用本文: 邓昊, 程伟. 一种功能梯度Timoshenko梁的损伤识别方法[J]. 北京航空航天大学学报, 2016, 42(10): 2214-2221. doi: 10.13700/j.bh.1001-5965.2015.0618
DENG Hao, CHENG Wei. Damage identification method for functionally graded Timoshenko beams[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10): 2214-2221. doi: 10.13700/j.bh.1001-5965.2015.0618(in Chinese)
Citation: DENG Hao, CHENG Wei. Damage identification method for functionally graded Timoshenko beams[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10): 2214-2221. doi: 10.13700/j.bh.1001-5965.2015.0618(in Chinese)

一种功能梯度Timoshenko梁的损伤识别方法

doi: 10.13700/j.bh.1001-5965.2015.0618
详细信息
    作者简介:

    邓昊,男,硕士研究生。主要研究方向:结构动力学。Tel.:15313257835,E-mail:15313257835@163.com;程伟,男,博士,教授,博士生导师。主要研究方向:结构动力学。Tel.:010-82310409,E-mail:cheng_wei@buaa.edu.cn

    通讯作者:

    程伟,Tel.:010-82310409,E-mail:cheng_wei@buaa.edu.cn

  • 中图分类号: TV312

Damage identification method for functionally graded Timoshenko beams

  • 摘要: 为了获得功能梯度材料的高精度损伤识别方法,本文基于动力学方法,通过对状态空间变量进行变量替换,求得了沿轴向指数分布的功能梯度Timoshenko梁的传递矩阵,通过分析裂纹对结构局部柔度的影响,采用扭转弹簧模拟裂纹对结构局部柔度的贡献,建立了功能梯度Timoshenko梁的表面裂纹传递矩阵,并且推导了复杂边界条件下多跨梁的理论模型。通过将非线性方程组转化为单一目标函数优化问题,并将增广拉格朗日算法与差分进化算法相结合对结构进行损伤识别。计算实例表明,本文提出的方法具有精度高、收敛快等特点,且适用于复杂边界条件下多损伤模型的损伤识别。

     

  • [1] BIRMAN V,BYRD L W.Modeling and analysis of functionally graded materials and structures[J].Applied Mechanics Reviews,2007,60(1-6):195-216.
    [2] ZHONG Z,YU T.Analytical solution of a cantilever functionally graded beam[J].Composites Science and Technology,2007,67(3-4):481-488.
    [3] LI X F.A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams[J].Journal of Sound and Vibration,2008,318(4-5):1210-1229.
    [4] LI X F,WANG B L,HAN J C.A higher-order theory for static and dynamic analyses of functionally graded beams[J].Archive Applied Mechanics,2010,80(10):1197-1212.
    [5] PRADHAN K K,CHAKRAVERTY S.Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method[J].Composites Part B:Engineering,2013,51:175-184.
    [6] KANG Y A,LI X F.Large deflections of a non-linear cantilever functionally graded beam[J].Journal of Reinforced Plastics and Composites,2010,29(12):1761-1774.
    [7] ELISHAKOFF I.Eigenvalues of inhomogeneous structures:Unusual closed-form solutions[M].Boca Raton:CRC Press,2005:284-285.
    [8] ECE M C,AYDOGDU M,TASKIN V.Vibration of a variable cross-section beam[J].Mechanics Research Communications,2007,34(1):78-84.
    [9] ATMANE H A,TOUNSI A,MEFTAH S A,et al.Free vibration behavior of exponentially functionally graded beams with varying cross-section[J].Journal of Vibration and Control,2011,17(2):311-318.
    [10] WANG C Y,WANG C M.Exact vibration solutions for a class of nonuniform beams[J].Journal of Engineering Mechanics,2013,139(7):928-931.
    [11] WANG C Y,WANG C M.Exact vibration solution for exponentially tapered cantilever with tip mass[J].Journal of Vibration and Acoustics,2012,134(4):041012.
    [12] SANKAR B V.An elasticity solution for functionally graded beams[J].Composites Science and Technology,2001,61(5):689-696.
    [13] ESMAILZADEH E,OHADI A.Vibration and stability analysis of non-uniform Timoshenko beams under axial and distributed tangential load[J].Journal of Sound and Vibration,2000,236(3):443-456.
    [14] HUANG Y,YANG L E,LUO Q Z.Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-uniform cross-section[J].Composites Part B:Engineering,2013,45(1):1493-1498.
    [15] LI X F,KANG Y A,WU J X.Exact frequency equations of free vibration of exponentially functionally graded beams[J].Applied Acoustics,2013,74(3):413-420.
    [16] TANG A Y,WU J X,LI X F.Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams[J].International Journal of Mechanical Sciences,2014,89:1-11.
    [17] YOKOYAMA T,CHEN M C.Vibration analysis of edge-cracked beams using a line-spring model[J].Engineering Fracture Mechanics,1998,59(3):403-409.
    [18] SHIFRIN E I,RUOTOLO R.Natural frequencies of a beam with arbitrary number of cracks[J].Journal of Sound and Vibration,1999,222(3):409-423.
    [19] LI Q S.Buckling of muti-step cracked columns with shear deformation[J].Engineering Structures,2001,23(4):356-364.
    [20] HSU M H.Vibration analysis of edge-cracked beam on elastic foundation with axial loading using the differential quadrature method[J].Computer Methods in Applied Mechanics and Engineering,2005,194(1):1-17.
    [21] YANG J,CHEN Y,XIANG Y,et al.Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load[J].Journal of Sound and Vibration,2008,312(1-2):166-181.
    [22] WEI D,LIU Y H,XIANG Z H.An analytical method for free vibration analysis of functionally graded beams with edge cracks[J].Journal of Sound and Vibration,2012,331(7):1686-1700.
    [23] ATTAR M.A transfer matrix method for free vibration analysis and crack identification of stepped beams with multiple edge cracks and different boundary conditions[J].International Journal of Mechanical Sciences,2012,57(1):19-33.
    [24] TADA H,PARIS P C,IRWIN G R.The stress analysis of cracks handbook[M].New York:ASME Press,2000:164.
    [25] NARKIS Y,ELMALAH E.Crack identification in a cantilever beam under uncertain end conditions[J].International Journal of Mechanical Sciences,1996,38(5):499-507.
    [26] GROSAN C,ABRAHAM A.A new approach for solving nonlinear equations systems[J].IEEE Transactions on Systems,Man,and Cybernetics,Part A:Systems and Humans,2008,38(3):698-714.
    [27] POURRAJABIAN A,EBRAHIMI R,MIRZAEI M,et al.Applying genetic algorithms for solving nonlinear algebraic equations[J].Applied Mathematics and Computation,2013,219(24):11483-11494.
    [28] CONN A R,GOULD N I M,TOINT P L.A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds[J].SIAM Journal on Numerical Analysis,1991,28(2):545-572.
    [29] HESTENES M R.Multiplier and gradient methods[J].Journal of Optimization Theory and Applications,1969,4(5):303-320.
    [30] 杨启文,蔡亮,薛云灿.差分进化算法综述[J].模式识别与人工智能,2008,21(4):507-513.YANG Q W,CAI L,XUE Y C.A survey of differential evolution algorithms[J].Pattern Recognition and Artificial Intelligence,2008,21(4):507-513(in Chinese).
  • 加载中
计量
  • 文章访问数:  741
  • HTML全文浏览量:  50
  • PDF下载量:  726
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-22
  • 网络出版日期:  2016-10-20

目录

    /

    返回文章
    返回
    常见问答