Structure design and performance analysis of a new buffering leg
-
摘要: 腿部结构是实现仿生蝗虫跳跃机器人良好缓冲性能的重要组成部分,因此对其进行结构设计及分析具有重要的意义。为实现更好的着陆缓冲性能,基于蝗虫腿部生理结构和现有仿生串联腿的结构形式,设计了一种新型的用于跳跃机器人的缓冲腿。在对缓冲腿的力学性能进行分析的基础上,根据缓冲性能评价原则,对结构参数进行了分析及优化,并对同时处于最优状态下的新型缓冲腿和原有仿生串联缓冲腿的缓冲性能进行分析比较。相对于原有仿生串联缓冲腿,改进后的新型缓冲腿受到地面作用力的幅值减小了25.3%,储能能力提高了34.6%。这为仿生蝗虫跳跃机器人及其他着陆机构的研制提供了依据。Abstract: The leg structure is an important component to achieve good buffering performance for bionic locust jumping robot, so the structure design and analysis of the leg has important significance. In order to achieve the better landing buffering performance, a new buffering leg is designed based on the physiological structure of the locust's leg and the structure of bionic series buffering leg. After the kinematic and mechanical property analysis for the buffering leg, the structure parameters are analyzed and optimized according to the buffering performance evaluation principle, and the buffering performance of the new buffering leg and bionic series buffering leg, which are in the optimal state, is compared and analyzed. Compared with the bionic series buffering leg, the amplitude of the force that the new buffering leg is subjected to from the ground reduces by 25.3%, and the energy storage capacity increases by 34.6%. It provides a basis for the development of robot and other landing mechanism.
-
Key words:
- bionic robot /
- buffering leg /
- structure design /
- parameter optimization /
- performance analysis
-
[1] 陈殿生,张自强,陈科位.仿生蝗虫机构着陆缓冲过程中的能量分配[J].机械工程学报,2015,51(13):196-202.CHEN D S,ZHANG Z Q,CHEN K W.Energy allocation in landing buffering process for biomimetic locust mechanism[J].Journal of Mechanical Engineering,2015,51(13):196-202(in Chinese). [2] ZHANG J,SONG G,LI Y,et al.A bio-inspired jumping robot:Modeling,simulation,design,and experimental results[J].Mechatronics,2013,23(8):1123-1140. [3] CHEN D S,YIN J M,CHEN K W,et al.Biomechanical and dynamic mechanism of locust take-off[J].Acta Mechanica Sinica,2014,30(5):762-774. [4] CHEN D S,YIN J M,CHEN K W,et al.Prototype design and experimental study on locust air-posture righting[J].Journal of Bionic Engineering,2014,11(3):459-468. [5] HYON S H,EMURA T,MITA T.Dynamics-based control of a one-legged hopping robot[J].Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems and Control Engineering,2003,217(2):83-98. [6] HYON S H,MITA T.Development of a biologically inspired hopping robot-"Kenken"[C]//Proceeding of the IEEE International Conference on Robotics and Automation.Piscataway,NJ:IEEE Press,2002,4:3984-3991. [7] NIIYAMA R,NAGAKUBO A,KUNIYOSHI Y.Mowgli:A bipedal jumping and landing robot with an artificial musculoskeletal system[C]//Proceeding of the IEEE International Conference on Robotics and Automation.Piscataway,NJ:IEEE Press,2007:2546-2551. [8] ESTREMERA J,WALDRON K J.Thrust control,stabilization and energetics of a quadruped running robot[J].The International Journal of Robotics Research,2008,27(10):1135-1151. [9] NICHOL J G,SINGH S P N,WALDRON K J,et al.System design of a quadrupedal galloping machine[J].The International Journal of Robotics Research,2004,23(10-11):1013-1027. [10] PALMER L R,ORIN D E,MARHEFKA D W,et al.Intelligent control of an experimental articulated leg for a galloping machine[C]//Proceeding of IEEE International Conference on Robotics and Automation.Piscataway,NJ:IEEE Press,2003,3:3821-3827. [11] WOODEN D,MALCHANO M,BLANKESPOOR K,et al.Autonomous navigation for BigDog[C]//Proceeding of IEEE International Conference on Robotics and Automation (ICRA).Piscataway,NJ:IEEE Press,2010:4736-4741. [12] SEOK S,WANG A,CHUAH M Y,et al.Design principles for energy-efficient legged locomotion and implementation on the MIT Cheetah robot[J].IEEE/ASME Transactions on Mechatronics,2014,20(3):1117-1129. [13] 陈学生,陈在礼,孔民秀,等.并联机器人研究的进展与现状[J].机器人,2002,24(5):464-470.CHEN X S,CHEN Z L,KONG X M,et al.Recent development and current status of stewart platform research[J].Robot,2002,24(5):464-470(in Chinese). [14] 王洪波,齐政彦,胡正伟,等.并联腿机构在四足/两足可重组步行机器人中的应用[J].机械工程学报,2009,45(8):24-30.WANG H B,QI Z Y,HU Z W,et al.Application of parallel leg mechanisms in quadruped/biped reconfigurable walking robot[J].Journal of Mechanical Engineering,2009,45(8):24-30(in Chinese). [15] ZHAO J,XI N,GAO B,et al.Development of a controllable and continuous jumping robot[C]//Proceedings of the 2011 IEEE International Conference on Robotics and Automation,ICRA 2011.Piscataway,NJ:IEEE Press,2011:4614-4619. [16] 田兴华,高峰,陈先宝,等.四足仿生机器人混联腿构型设计及比较[J].机械工程学报,2013,49(6):81-88.TIAN X H,GAO F,CHEN X B,et al.Mechanism design and comparison for quadruped robot with parallel-serial leg[J].Journal of Mechanical Engineering,2013,49(6):81-88(in Chinese). [17] LIU G H,LIN H Y,LIN H Y,et al.A bio-inspired hopping kangaroo robot with an active tail[J].Journal of Bionic Engineering,2014,11(4):541-555. [18] CHOU Y C,HUANG K J,YU W S,et al.Model-based development of leaping in a hexapod robot[J].IEEE Transactions on Robotics,2015,31(1):40-54. [19] CHEN D S,ZHANG Z Q,CHEN K W.Dynamic model and performance analysis of landing buffer for bionic locust mechanism[J].Acta Mechanica Sinica,2016,32(3):551-565. [20] 周纪卿,朱因远.非线性振动[M].西安:西安交通大学出版社,1998:140-143.ZHOU J Q,ZHU Y Y.Nonlinear vibration[M].Xi'an:Xi'an Jiaotong University Press,1998:140-143(in Chinese).
点击查看大图
计量
- 文章访问数: 915
- HTML全文浏览量: 140
- PDF下载量: 605
- 被引次数: 0